General Catalog
Linear Encoders
Length Gauges
Angle Encoders
Rotary Encoders
Contouring Controls
Touch Probes
Evaluation Electronics
Digital Readouts
09/2020
This General Catalog offers you an overview of the HEIDENHAIN product program. You will find more products and further information in the documentation for specific products (see Further information on page 68 or on the Internet at www.heidenhain.de). Our sales personnel will be glad to help you personally. See Sales and service—worldwide on page 70 for addresses and telephone numbers.

The image on the title page shows a milled part with curved surfaces that was milled with diagonal, alternating face-milling movements. The workpiece was machined with a TNC control from HEIDENHAIN on an HSC machining center. Despite the direction reversal during face milling, a very high surface quality was attained thanks to the highly dynamic motion control.

Contents

Fundamentals and processes

Precision graduations—the foundation for high accuracy

Length measurement
- Sealed linear encoders
- Exposed linear encoders
- Length gauges

Angle measurement
- Sealed angle encoders
- Angle encoder modules
- Modular angle encoders
- Rotary encoders

Machine tool control
- Contouring controls for milling machines, milling-turning machines, and machining centers
- Contouring controls for turning machines
- Straight-cut control for milling machines
- Contouring control for lathes and turning-milling machines
- Contouring control for CNC and cycle lathes
- Contouring controls: digital control design
- Accessories: electronic handwheels, programming stations, StateMonitor

Tool and workpiece setup and measurement
- Workpiece touch probes
- Tool touch probes

Measured value acquisition and display
- Evaluation electronics for metrology applications
- Digital readouts for manually operated machine tools
- Interface electronics, inspection and testing devices

Further information

Sales and service
The high quality of HEIDENHAIN products depends on special production facilities and measuring equipment. Masters and submasters for scale manufacturing are produced in a clean room with special measures for temperature stabilization and vibration insulation. HEIDENHAIN develops and builds most of the machines it needs for the production and measurement of linear and circular scales, including the necessary copying equipment.

Competence in the area of linear and angular metrology is reflected by a large number of customized solutions for users. Among other implementations, they include the measuring and test equipment developed and built for standards laboratories and the angle encoders for telescopes and satellite receiving antennas. Of course, the products in the standard HEIDENHAIN product program profit from the knowledge gained.

The heart of a HEIDENHAIN encoder is its measuring standard, usually in the form of a grating with typical line widths of 0.25 µm to 10 µm. These precision graduations are manufactured in a process invented by HEIDENHAIN (e.g. DIADUR or METALLUR) and are a decisive factor in the function and accuracy of encoders. The graduations consist of lines and gaps at defined intervals with very little deviation, forming structures with very high edge definition. These graduations are resistant to mechanical and chemical influences and can tolerate vibration and shock. All measuring standards have a defined thermal behavior.

DIADUR
DIADUR precision graduations are composed of an extremely thin layer of chromium on a substrate—usually of glass or glass ceramic. The accuracy of the graduation structure lies within the micron and submicron range.

OPTODUR
The OPTODUR process produces graduation structures with particularly high reflectance. Its composition as an optically three-dimensional, planar structure is similar to the SUPRADUR graduation.

MAGNODUR
Thin magnetically active layers in the micron range are structured for very fine, magnetized graduations.

DIADUR and METALLUR graduations on various carrier materials

DIADUR and METALLUR precision graduations are composed of an extremely thin layer of chromium on a substrate—usually of glass or glass ceramic. The accuracy of the graduation structure lies within the micron and submicron range.
Sealed linear encoders
Sealed linear encoders from HEIDENHAIN are available with:

- Full-size scale housing
 - For high vibration loading
 - Up to 30 m measuring length
 (72 m upon request)
- Slimline scale housing
 - For limited installation space
 - Measuring lengths of up to 2040 mm
 (for measuring lengths starting from 1240 mm, mounting via mounting spar or tensioning elements)

Length measurement

Sealed linear encoders
Sealed linear encoders from HEIDENHAIN are protected from dust, chips, and splash fluids and are ideal for operation on machine tools.

- Accuracy grades as fine as ±2 µm
- Measuring steps of down to 0.001 µm
- Measuring lengths of up to 30 m
 (72 m upon request)
- Fast and simple installation
- Large mounting tolerances
- High acceleration loading
- Protection against contamination

Exposed linear encoders
Exposed linear encoders from HEIDENHAIN operate with no mechanical contact between the scanning head and the scale or tape. Typical areas of application for these encoders include measuring machines, comparators, and other precision devices, as well as production and measuring equipment, for example, in the semiconductor industry.

- Accuracy grades of ±0.5 µm and better
- For measuring steps of down to 0.001 µm (1 nm)
- Measuring lengths of up to 30 m
- No friction between scanning head and scale
- Small dimensions and low mass
- High traversing speeds

Length gauges
Length gauges from HEIDENHAIN feature integral guideways for the plunger. They are used to monitor measuring equipment, in industrial metrology, and as position encoders.

- Accuracy grades as fine as ±0.1 µm
- For measuring steps of down to 0.005 µm (5 nm)
- Measuring lengths of up to 100 mm
- High measuring accuracy
- Available with automated plunger drive
- Simple mounting

With incremental linear encoders, the current position is determined by starting at a datum and counting measuring steps, or by subdividing and counting signal periods. Incremental encoders from HEIDENHAIN feature reference marks, which must be scanned after switch-on to reestablish the reference point. This process is especially simple and fast with distance-coded reference marks.

With sealed linear encoders, the encoder transmits the absolute value through the EnDat interface or another serial interface.

The recommended measuring steps listed in the table refer primarily to position measurements. Smaller measuring steps, which are attained through higher interpolation factors of sinusoidal output signals, are useful in particular for applications in rotational speed control, e.g. on direct drives.

Under the designation functional safety, HEIDENHAIN offers encoders with purely serial data transmission as single-encoder systems for safety-related machines and systems. The two measured values are already formed independently of each other in the encoder, and are transmitted to the safe control via the EnDat interface.

Sealed linear encoders

<table>
<thead>
<tr>
<th>Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC 100</td>
<td>8</td>
</tr>
<tr>
<td>LC 200</td>
<td></td>
</tr>
<tr>
<td>LS 100</td>
<td></td>
</tr>
<tr>
<td>LF 100</td>
<td></td>
</tr>
<tr>
<td>LS 600</td>
<td></td>
</tr>
<tr>
<td>LB 300</td>
<td></td>
</tr>
</tbody>
</table>

With full-size scale housing

- Absolute position measurement
- Absolute position measurement and large measuring lengths
- Incremental position measurement
- Very high repeatability
- Typically for manual machines
- Large measuring lengths

With slimline scale housing

- Absolute position measurement
- Incremental position measurement
- Very high repeatability
- Typically for manual machines

Exposed linear encoders

- Very high accuracy
- Two-coordinate encoders
- For high accuracy and large measuring lengths
- Absolute position measurement

Length gauges

For measuring stations and multipoint inspection apparatuses

| AT, CT, MT, ST | 16 |

6
7
LC, LF, LS, LB sealed linear encoders
With full-size scale housing

Linear encoders with full-size scale housing are characterized particularly by high tolerance to vibration.

Absolute linear encoders of the LC 100 series and the LC 200 series provide the absolute position value without requiring any previous traverse. Depending on the version, incremental signals can be output additionally. The LC 100 can be mounted to the same mating dimensions as the incremental linear encoders of the LS 100 series and feature the same mechanical design. Because of their high accuracy and defined thermal behavior, LC 100 and LS 100 series linear encoders are especially well suited for use on numerically controlled machine tools.

The incremental encoders of the LF type feature measuring standards with relatively fine grating periods. This makes them particularly attractive for applications requiring very high repeatability. The LS 600 series incremental linear encoders are used for simple positioning tasks, for example on manual machine tools.

The LC 200 (absolute) and LB (incremental) linear encoders were conceived for very long measuring lengths. Their measuring standard—a steel tape with METALLUR or AURODUR graduation—is delivered as a single piece, and after the housing sections have been mounted, is pulled through the sections, drawn to a defined tension and fixed at both ends to the machine base.

Specifications

<table>
<thead>
<tr>
<th>LC 100 series</th>
<th>LS 100 series</th>
<th>LC 200 series</th>
<th>LS 600 series</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute position measurement</td>
<td>Incremental position measurement</td>
<td>Absolute position measurement</td>
<td>Incremental position measurement</td>
</tr>
<tr>
<td>Defined thermal behavior</td>
<td>Defined thermal behavior</td>
<td>Defined thermal behavior</td>
<td>Defined thermal behavior</td>
</tr>
<tr>
<td>High vibration resistance</td>
<td>High vibration resistance</td>
<td>High vibration resistance</td>
<td>High vibration resistance</td>
</tr>
<tr>
<td>Two mounting attitudes</td>
<td>Two mounting attitudes</td>
<td>Two mounting attitudes</td>
<td>Two mounting attitudes</td>
</tr>
</tbody>
</table>

Measuring standards

<table>
<thead>
<tr>
<th>Measuring standard</th>
<th>LC 115 / LC 185, LC 195/F/M/P/S</th>
<th>LC 211 / LC 281, LC 291/F/M</th>
<th>Incremental</th>
<th>LS 189 / LS 177</th>
<th>LS 688 C / LS 628 C</th>
<th>LB 382</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grating period</td>
<td>DIADUR glass scale</td>
<td>METALLUR steel scale tape</td>
<td>SUPRADUR phase grating on steel</td>
<td>DIADUR glass scale</td>
<td>DIADUR glass scale</td>
<td>AURODUR steel scale tape</td>
</tr>
<tr>
<td>20 µm</td>
<td>40 µm</td>
<td>8 µm</td>
<td>20 µm</td>
<td>20 µm</td>
<td>40 µm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC 185: EnDat 2.2, 1 Vpp</td>
<td>LC 281: EnDat 2.2, 1 Vpp</td>
<td>LS 177: TTL</td>
<td>LS 628 C: TTL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fanuc</td>
<td>Fanuc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mitsubishi/Mitsubishi/Panasonic</td>
<td>DRIVE-CLIQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal period</td>
<td>LC 185: 20 µm</td>
<td>LC 281: 40 µm</td>
<td>LS 187: 20 µm</td>
<td>LS 688 C: 20 µm</td>
<td>40 µm</td>
<td></td>
</tr>
<tr>
<td>Accuracy grade</td>
<td>±5 µm, ±3 µm</td>
<td>±5 µm</td>
<td>±5 µm</td>
<td>±5 µm</td>
<td>±5 µm</td>
<td></td>
</tr>
<tr>
<td>Measuring lengths</td>
<td>Up to 42 400 mm</td>
<td>Up to 28 040 mm</td>
<td>Up to 3040 mm</td>
<td>Up to 3040 mm</td>
<td>Up to 30 400 mm</td>
<td></td>
</tr>
<tr>
<td>Reference mark</td>
<td>One or distance-coded, LS 688C: distance-coded</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Also available with functional safety
2) 5/10/20-fold integrated interpolation

Other information

- LC 100: Absolute position measurement, Defined thermal behavior, High vibration resistance, Two mounting attitudes, Single-field scanning
- LC 200: Absolute position measurement, For large measuring lengths of up to 28 m, Defined thermal behavior, High vibration resistance, Two mounting attitudes, Single-field scanning
- LB 382: Incremental position measurement, For large measuring lengths of up to 30 m, Defined thermal behavior, High vibration resistance, Two mounting attitudes, Single-field scanning
- LS 600: Incremental position measurement, Typically for manual machines, Simple mounting

DRIVE-CLIQ is a registered trademark of SIEMENS AG.
LC, LF, LS sealed linear encoders
With slimline scale housing

Sealed linear encoders with slimline scale housing are primarily used where installation space is limited. Absolute linear encoders of the LC 400 series provide the absolute position value without requiring any previous traverse. Like the LS 400 series incremental linear encoders, their high accuracy and defined thermal behavior make them especially well suited for use on numerically controlled machine tools.

The incremental encoders of the LF type feature measuring standards with relatively fine grating periods. This makes them particularly attractive for applications requiring very high repeatability.

The LS 300 series incremental linear encoders are used for simple positioning tasks, for example on manual machine tools.

Simple installation with mounting spar
The use of a mounting spar is of great benefit when mounting slimline linear encoders. It can be fastened as part of the machine assembly process. The encoder is then simply clamped on during final mounting. Easy exchange also facilitates servicing. Moreover, installation with a mounting spar significantly improves the encoder’s acceleration behavior.

<table>
<thead>
<tr>
<th>LC 400 series</th>
<th>LC 415 / LC 485 / LC 495 F/M/P/S</th>
<th>Absolute position measurement</th>
<th>Defined thermal behavior</th>
<th>Single-field scanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS 400 series</td>
<td>LS 487 / LS 477</td>
<td>Incremental position measurement</td>
<td>Defined thermal behavior</td>
<td>Single-field scanning</td>
</tr>
<tr>
<td>LF 485</td>
<td></td>
<td>Incremental position measurement</td>
<td>Very high repeatability</td>
<td>Thermal behavior similar to steel or cast iron</td>
</tr>
<tr>
<td>LS 300 series</td>
<td></td>
<td>Incremental position measurement</td>
<td>Typically for manual machines</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring standard</th>
<th>Grating period</th>
<th>Interface</th>
<th>Signal period</th>
<th>Accuracy grade</th>
<th>Measuring lengths ML</th>
<th>Reference mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIADUR glass scale</td>
<td>20 µm</td>
<td>LC 415: EnDat 2.2</td>
<td>LC 486: 20 µm</td>
<td>±5 µm, ±3 µm</td>
<td>Up to 2040 mm*2</td>
<td>One or distance-coded</td>
</tr>
<tr>
<td>SUPRADUR phase</td>
<td>20 µm</td>
<td>LC 486: EnDat 2.2 with</td>
<td>LC 487: 4 µm</td>
<td>±5 µm, ±3 µm</td>
<td>Up to 1220 mm</td>
<td>Distance-coded</td>
</tr>
<tr>
<td>grating on steel</td>
<td></td>
<td>4 µm</td>
<td></td>
<td>±5 µm, ±3 µm</td>
<td>Up to 2040 mm*3</td>
<td></td>
</tr>
<tr>
<td>8 µm</td>
<td>1 Vpp</td>
<td>LC 485: Fanuc aV</td>
<td>LC 487: 20 µm</td>
<td>±5 µm, ±3 µm</td>
<td>Up to 1240 mm</td>
<td></td>
</tr>
<tr>
<td>DIADUR glass scale</td>
<td>20 µm</td>
<td>LS 487: 1 Vpp</td>
<td></td>
<td>±10 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIADUR glass scale</td>
<td>20 µm</td>
<td>LS 487: TTL*4</td>
<td></td>
<td>±10 µm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 Also available with functional safety
*2 5/10/20-fold integrated interpolation
*3 Over ML 1240 mm with mounting spar or clamping elements

DRIVE-CLiQ is a registered trademark of SIEMENS AG.
LIP, LIF exposed linear encoders
For very high accuracy

The exposed linear encoders of the LIP and LIF design are characterized by small measuring steps together with high accuracy. The measuring standard is a phase grating applied to a substrate of glass or glass ceramic.

LIP and LIF encoders are typically used for:
• Measuring machines and comparators
• Measuring microscopes
• Ultra-precision machines such as diamond lathes for optical components, facing lathes for magnetic storage disks, and grinding machines for ferrite components
• Measuring and production equipment in the electronics industry

Special vacuum applications in high vacuum are served by LIF 481 V and LIP 481 V (for high vacuum, down to 10^{-7} bar) and LIP 481 U (for ultrahigh vacuum, down to 10^{-11} bar).

<table>
<thead>
<tr>
<th>Series</th>
<th>Highest resolutions, with measuring steps of down to <1 nm</th>
<th>Very high repeatability through an extremely fine signal period</th>
<th>Defined thermal behavior thanks to a measuring standard on Zerodur glass ceramic scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIP 300</td>
<td>LIP 600 series</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIP 200 series</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIP 400 series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIP 382</td>
<td>Incremental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIP 281</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIP 211</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIP 6081, LIP 6071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grating period</td>
<td>DIADUR phase grating on Zerodur glass ceramic 0.512 µm</td>
<td>OPTODUR phase grating on Zerodur glass ceramic 2.048 µm</td>
<td>OPTODUR phase grating on glass or Zerodur glass ceramic 8 µm</td>
</tr>
<tr>
<td>Interface</td>
<td></td>
<td></td>
<td>SUPRADUR phase grating on glass or Zerodur glass ceramic 8 µm</td>
</tr>
<tr>
<td>Signal period</td>
<td>0.128 µm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy grade</td>
<td>±0.5 µm</td>
<td>±1 µm (only for Zerodur)</td>
<td>±3 µm (only for Zerodur)</td>
</tr>
<tr>
<td>Baseline error</td>
<td>±0.075 µm/6 mm</td>
<td>±0.125 µm/5 mm</td>
<td>±0.175 µm/5 mm</td>
</tr>
<tr>
<td>Interpolation error</td>
<td>±0.01 mm</td>
<td>±0.4 mm</td>
<td>±12 mm</td>
</tr>
<tr>
<td>Measuring lengths ML</td>
<td>70 mm to 270 mm</td>
<td>20 mm to 1020 mm</td>
<td>20 mm to 1640 mm</td>
</tr>
<tr>
<td>Reference mark</td>
<td>None</td>
<td>One</td>
<td>One</td>
</tr>
</tbody>
</table>

1) Absolute position value after scanning the reference mark
2) Only with encoders with 1 Vpp or EnDat 2.2 interface

PP exposed linear encoders
Two-coordinate encoders

The PP two-coordinate encoders feature as measuring standard a planar phase-grating structure on a glass substrate. This makes it possible to measure positions in a plane.

Applications include:
• Measuring and production equipment in the semiconductor industry
• Measuring and production equipment in the electronics industry
• Extremely fast X-Y tables
• Measuring machines and comparators
• Measuring microscopes
LIC, LIDA exposed linear encoders

For high accuracy and large measuring lengths

The LIC and LIDA exposed linear encoders are designed for high traversing speeds of up to 10 m/s and large measuring lengths of up to 30 m.

The LIC encoders make absolute position measurement possible over measuring lengths of up to 28 m. In their dimensions, they correspond to LIDA 400 and LIDA 200 incremental linear encoders.

On the LIC and LIDA linear encoders, steel scale tapes typically serve as substrate for METALLUR graduations. With the LIC 41x3 and LIDA 4x3 graduation carriers of glass or glass ceramics permit thermal adaptation thanks to their different coefficients of linear expansion.

LIC and LIDA exposed linear encoders are typically used for:
- Coordinate measuring machines
- Inspection machines
- PCB assembly machines
- Precision handling devices
- Position and velocity measurement on linear motors

There are various possibilities for easy mounting of the LIC and LIDA encoders:

LIC 4100 series
- Absolute position acquisition up to 28 m
- Various mounting options

LIC 410x series
- Scale of glass or glass ceramic is bonded directly onto the mounting surface

LIC 41x5, LIDA 4x5
- One-piece steel scale tape pulled through aluminum extrusions and tensioned at its ends
- The aluminum extrusions can be screwed or bonded onto the mounting surface

LIC 41x2, LIDA 4x2 LIDA 2x7
- One-piece steel scale-tape pulled through aluminum extrusions and fastened at center
- The aluminum extrusions are bonded directly to the mounting surface

LIC 41x9, LIDA 4x9, LIDA 2x9
- One-piece steel scale-tape pulled through aluminum extrusions and tensioned at its ends
- Also available with functional safety

LIP 3000 series
- Absolute position measurement
- Large mounting tolerance
- For simple applications

LIP 400 series
- Large measuring lengths of up to 30 m
- Various mounting options
- Limit switches

LIP 200 series
- Scale tape cut from roll
- Large mounting tolerance
- For simple applications
- Simple installation through integrated function display

<table>
<thead>
<tr>
<th>Measuring standard</th>
<th>LIC 4113</th>
<th>LIC 4115</th>
<th>LIC 4117</th>
<th>LIC 4119</th>
<th>LIC 4119 3</th>
<th>LIC 4183</th>
<th>LIC 4175</th>
<th>LIC 4177</th>
<th>LIC 4179</th>
<th>LIC 4193</th>
<th>LIC 4195</th>
<th>LIC 4197</th>
<th>LIC 4199</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grating period</td>
<td>METALLUR graduation on glass ceramic or glass 40 µm</td>
<td>METALLUR graduation on glass ceramic or glass 40 µm</td>
<td>METALLUR steel scale tape 20 µm</td>
<td>METALLUR steel scale tape 20 µm</td>
<td>Steel scale tape 200 µm</td>
<td>Steel scale tape 200 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>LIC 411x: EnDat 2.2 LIC 418x: Fanuc αi/Mitsubishi/Panasonic/Yaskawa</td>
<td>LIDA 48x: EnDat 2.2 LIDA 47x: TTL</td>
<td>LIDA 48x: EnDat 2.2 LIDA 47x: TTL</td>
<td>LIDA 48x: EnDat 2.2 LIDA 47x: TTL</td>
<td>LIDA 28x: 1 Vpp LIDA 28x: TTL</td>
<td>LIC 211x: EnDat 2.2 LIC 218x: Fanuc αi/Mitsubishi/Panasonic/Yaskawa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>–</td>
<td>LIDA 48x: 20 µm</td>
<td>–</td>
<td>LIDA 28x: 200 µm</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy grade</td>
<td>±3 µm; ±5 µm</td>
<td>±5 µm; ±3 µm; ±5 µm</td>
<td>±3 µm; ±5 µm; ±15 µm</td>
<td>±1 µm; ±3 µm; ±5 µm</td>
<td>±5 µm</td>
<td>±3 µm; ±5 µm; ±15 µm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline error</td>
<td>≤ ±0.275 µm/10 mm</td>
<td>≤ ±0.750 µm/50 mm</td>
<td>≤ ±0.275 µm/10 mm</td>
<td>≤ ±0.750 µm/50 mm</td>
<td>≤ ±0.750 µm/50 mm</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpolation error1)</td>
<td>±20 nm</td>
<td>±20 nm</td>
<td>±20 nm</td>
<td>±20 nm</td>
<td>±20 nm</td>
<td>±20 nm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measuring lengths ML</td>
<td>240 mm to 3040 mm</td>
<td>140 mm to 28440 mm</td>
<td>240 mm to 6040 mm</td>
<td>70 mm to 1020 mm</td>
<td>240 mm to 3040 mm</td>
<td>140 mm to 30404 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>One or distance-coded</td>
<td>One</td>
<td>Selectable every 100 mm</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Also available with functional safety
2) Up to 100-fold integrated interpolation (LIDA 47x also 5-fold)
3) Up to measuring length of 1020 mm or 1040 mm

1) Only available with functional safety
2) Only with encoders with 1 Vpp or EnDat 2.2 interface
AT, CT, MT, ST length gauges
For measuring stations and multipoint inspection apparatuses

HEIDENHAIN length gauges are characterized by high accuracy together with large strokes of up to 100 mm, they feature plungers with integral bearings and therefore serve as compact measuring devices.

The HEIDENHAIN-CERTO CT length gauges are used predominantly for production quality control of high-precision parts and for the monitoring and calibration of reference standards.

The HEIDENHAIN-METRO MT 1200 and MT 2500 length gauges are ideal for precision measuring stations and testing equipment. The ball-bush guided plunger tolerates high radial forces. The primary applications for the MT 60 and MT 101 are incoming inspection, production monitoring, and quality control. They are also used as high-accuracy position encoders, for example on linear slides or X-Y tables.

Thanks to their very small dimensions, the HEIDENHAIN-ACANTO AT and HEIDENHAIN-SPECTO ST series length gauges are the product of choice for multipoint inspection apparatus and testing equipment.

Plunger actuation
The plungers of the length gauges with motorized plunger actuation are extended and retracted by an integral motor. They are operated through the associated switch box.

Length gauges with plunger actuation by coupling have no plunger drive. The freely movable plunger is connected by a separate coupling with the moving machine element.

The length gauges with plunger actuation by the measured object or with cable-type lifter feature a spring-loaded plunger that is extended in its resting position.

The MT 1281 and ST 1288 length gauges are available with various gauging forces. Particularly for fragile materials this makes it possible to measure without deformation.

On the length gauges with pneumatic plunger actuation, the plunger is retracted by the integral spring at its rest position. It is extended to the measuring position by application of compressed air.

HEIDENHAIN-ACANTO
• Online diagnostics
• Protection up to IP67
• Absolute scanning

HEIDENHAIN-CERTO
• For highest accuracy
• Low thermal expansion through thermally invariant materials
• High-precision ball bearing guide

HEIDENHAIN-METRO
MT 1200 and MT 2500
• High repeatability
• Various gauging force variants
• Various possibilities for plunger actuation

HEIDENHAIN-METRO
MT 60 and MT 101
• Large measuring ranges
• Plunger actuation by motor or coupling
• Ball-bush guided plunger

HEIDENHAIN-SPECTO
• Exceptionally compact dimensions
• Protection up to IP67
• Especially durable ball-bush guide
• Variant for harsh ambient conditions
Angle encoders

HEIDENHAIN angle encoders are characterized by high accuracy values in the range of angular seconds and better. These devices are used in applications such as rotary tables and swivel heads of machine tools, indexing heads, high-precision angle measuring tables, precision devices in angular metrology, antennas, and telescopes.

- Line counts: typically 9000 to 180,000
- Accuracy: from ±5” to ±0.4”
- Measuring steps: as fine as 0.000 01° or 0.000 01° (incremental) or 29 bits, i.e. approx. 538 million positions per revolution (absolute)

Rotary encoders

Rotary encoders from HEIDENHAIN serve as measuring sensors for rotary motion, angular velocity, and when used in conjunction with mechanical measuring standards such as lead screws, for linear motion. Application areas include electrical machines, machine tools, printing machines, woodworking machines, textile machines, robots, elevators, and handling devices, as well as various types of measuring, testing, and inspection devices.

- Line counts: typically 16 to 5000
- Accuracy grades: to ±10” (depending on the line count, corresponding to ±1/20 of the grating period)
- Measuring steps: as fine as 0.000 01°. Particularly for photoelectric rotary encoders, the high quality of the sinusoidal incremental signals permits high interpolation factors for digital speed control.

Mounting variants

In angle encoders and rotary encoders with integral bearing and stator coupling, the graduated disk of the encoder is connected directly to the shaft to be measured. The scanning unit is guided on the shaft via ball bearings, supported by the stator coupling. As a result, during angular acceleration of the shaft, the stator coupling must absorb only that torque resulting from friction in the bearing. These angle encoders therefore provide excellent dynamic performance. Thanks to the stator coupling, the system accuracy includes the error of the shaft coupling. Other benefits of the stator coupling are:

- Simple mounting
- Short overall length
- High natural frequency of the coupling
- Hollow through shaft is possible

Angle encoders and rotary encoders with integral bearings for a separate shaft coupling are designed with a solid shaft. The recommended coupling to the measured shaft compensates radial and axial tolerances. Angle encoders for separate shaft couplings permit higher shaft speeds.

Angle encoders and rotary encoders without integral bearing operate without friction. The two components—the scanning head and the scale disk, drum, or tape—are adjusted to each other during assembly. The benefits are:

- Little space required
- Large hollow-shaft diameters
- High shaft speeds possible
- No additional starting torque

Sealed angle encoders

<table>
<thead>
<tr>
<th>With integral bearing and integrated stator coupling</th>
<th>Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute (singleturn)/Incremental</td>
<td>RON, RPN</td>
<td>20</td>
</tr>
<tr>
<td>With integral bearing</td>
<td>Absolute (singleturn)/Incremental</td>
<td>ROC, ROD, RON</td>
</tr>
<tr>
<td>Angle encoder modules</td>
<td>With precision bearings</td>
<td>MRP, SRP</td>
</tr>
<tr>
<td>Modular angle encoders</td>
<td>Absolute (singleturn)/Incremental</td>
<td>ECA, ERA, ERO, ERP</td>
</tr>
<tr>
<td>Without integral bearing, with optical scanning</td>
<td>Absolute (singleturn)/Incremental</td>
<td>ECA, ERA, ERO, ERP</td>
</tr>
<tr>
<td>Without integral bearing, with magnetic scanning</td>
<td>Incremental</td>
<td>ERM</td>
</tr>
</tbody>
</table>

Rotary encoders

<table>
<thead>
<tr>
<th>With integral bearing, for mounting by stator coupling</th>
<th>Series</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute (singleturn/multiturn)/Incremental</td>
<td>ECN, EQN, ERN</td>
<td>34</td>
</tr>
<tr>
<td>With integral bearing, for separate shaft coupling</td>
<td>Absolute (singleturn/multiturn)/Incremental</td>
<td>ROC, ROQ, ROD</td>
</tr>
<tr>
<td>Without integral bearing</td>
<td>Absolute (singleturn/multiturn)/Incremental</td>
<td>ECI, EQI, EBI, ERO</td>
</tr>
</tbody>
</table>

With incremental angle encoders and rotary encoders, the current position is determined by starting at a reference point and counting measuring steps, or by subdividing and counting signal periods. Incremental encoders from HEIDENHAIN feature reference marks to reestablish the reference point.

Incremental rotary encoders with commutation signals provide the angular shaft position value—without requiring previous traverse—with sufficient accuracy to correctly control the phases of the rotating field of a permanent-magnet three-phase motor.

Absolute angle encoders and rotary encoders require no previous traverse to provide the current position value. Singleturn encoders provide the current angular position value within one revolution, while multiturn encoders can additionally distinguish between revolutions. The position values are transmitted over an EnDat, SSL, PROFIBUS DP, PROFINET, or other serial data interface. The bidirectional EnDat interface, PROFIBUS DP and PROFINET enable automatic configuration of the higher-level electronics and provide monitoring and diagnostic functions.

Under the designation functional safety, HEIDENHAIN offers encoders with purely serial data transmission as single-encoder systems for safety-related machines and systems. The two measured values are already formed independently of each other in the encoder, and are transmitted to the safe control via the EnDat interface.
RCN, RON, RPN sealed angle encoders

With integral bearing and integrated stator coupling

Because of their high static and dynamic accuracy, the RCN, RON, and RPN angle encoders with integral bearings and integral stator couplings are the preferred encoders for high-precision applications such as rotary tables and tilting axes. The measuring standard is usually a circular scale with DIADUR graduation. For the encoders with stator coupling, the specified accuracy includes the error caused by the coupling. For angle encoders with separate shaft coupling, the coupling error must be added to find the system accuracy.

RCN 2000 and RON 200 series
- Compact dimensions
- Sturdy design
- Typically used with rotary tables, tilting tables, for positioning and speed control

RCN 5000 series
- Large hollow shaft and small installation space
- Stator mounting dimensions compatible with RCN 2000 and RON 200

RCN 8000, RON 700, and RON/RPN 800 series
- Large hollow shaft diameters of up to Ø 100 mm
- System accuracies: ±2" and ±1"
- Typically used on rotary and angle measuring tables, indexing heads, measuring setups, image scanners, etc.

RCN 6000 series
- Very large hollow shaft
- System accuracy: ±2"
- Typically used with rotary tables, tilting tables, and direct drive motors

Features of the RCN 2000, RCN 5000, RCN 6000, and RCN 8000 series of angle encoders:
- Optimized scanning with large scanning surface for absolute track (serial code structure) and incremental track (single-field scanning and optical filtering)
- Large mounting tolerances thanks to optimized stator coupling with improved torsional rigidity and revised shaft seal
- Plug-in cable with quick disconnect
- Scanning and evaluation electronics for a large power supply range and additional monitoring and diagnostic capabilities
- Possibility of mechanical fault exclusion against loosening of the encoder-to-drive connection

<table>
<thead>
<tr>
<th>Interface</th>
<th>RCN 2380</th>
<th>RCN 2580</th>
<th>RCN 2310</th>
<th>RCN 2510</th>
<th>RCN 2390 F</th>
<th>RCN 2590 F</th>
<th>RCN 2390 M</th>
<th>RCN 2590 M</th>
<th>Incremental</th>
<th>RON 225</th>
<th>RON 285</th>
<th>RON 287</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position values/revolution</td>
<td>RCN 23x0: ±5"</td>
<td>RCN 25x0: ±2.5"</td>
<td>RCN 23x0: ±5"</td>
<td>RCN 25x0: ±2.5"</td>
<td>RCN 23x0: ±2.0"</td>
<td>RCN 25x0: ±2.0"</td>
<td>RCN 23x0: ±1"</td>
<td>RCN 25x0: ±1"</td>
<td>RCN 23x0: ±5"</td>
<td>RCN 25x0: ±5"</td>
<td>RCN 23x0: ±5"</td>
<td>RCN 25x0: ±5"</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>16 384</td>
<td>18 000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±5"; ±2.5"; ±2.0"</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤ 1500 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>RCN 5380</th>
<th>RCN 5580</th>
<th>RCN 5310</th>
<th>RCN 5510</th>
<th>RCN 5390 F</th>
<th>RCN 5590 F</th>
<th>RCN 5390 M</th>
<th>RCN 5590 M</th>
<th>Incremental</th>
<th>RON 786</th>
<th>RON 886</th>
<th>RPN 886</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position values/revolution</td>
<td>RCN 53x0: ±5"</td>
<td>RCN 55x0: ±2.5"</td>
<td>RCN 53x0: ±2.5"</td>
<td>RCN 55x0: ±2.5"</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>16 384</td>
<td>18 000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±5"; ±2.5"</td>
<td>±5"; ±2.5"</td>
<td>±2.5"; ±1"</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤ 1500 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>RCN 8380</th>
<th>RCN 8580</th>
<th>RCN 8310</th>
<th>RCN 8510</th>
<th>RCN 8390 F</th>
<th>RCN 8590 F</th>
<th>RCN 8390 M</th>
<th>RCN 8590 M</th>
<th>Incremental</th>
<th>RON 786</th>
<th>RON 886</th>
<th>RPN 886</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position values/revolution</td>
<td>RCN 83x0: ±2"</td>
<td>RCN 85x0: ±1"</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>16 384</td>
<td>18 000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±2"; ±1"</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤ 1000 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>RCN 6310</th>
<th>RCN 6390 F</th>
<th>RCN 6390 M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position values/revolution</td>
<td>536870912 (29 bits)</td>
<td>RCN 6390 F</td>
<td>Mitsubishi high speed interface</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>32 768</td>
<td>18 000, 36 000</td>
<td>36 000, 180 000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>RCN 83x0: ±2"; RCN 85x0: ±1"</td>
<td>±2"; ±1"</td>
<td>±2"; ±1"</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤ 500 rpm</td>
<td>≤ 1000 rpm</td>
<td>≤ 1000 rpm</td>
</tr>
</tbody>
</table>

1. Also available with functional safety
2. DRIVE-CLiQ via EIB; PROFIBUS DP via Gateway
3. Integrated 2-fold interpolation
4. Integrated 5/10-fold interpolation
5. Higher speeds possible depending on the operating temperature

DRIVE-CLiQ is a registered trademark of Siemens AG.
ROC, ROD, RON sealed angle encoders

With integral bearing

ROC and ROD angle encoders with solid shaft for separate shaft coupling are particularly suited to applications where higher shaft speeds and larger mounting tolerances are required. The precision shaft couplings allow up to ±1 mm of axial motion.

ROC and ROD angle encoders feature a DIADUR circular scale as measuring standard. For angle encoders with separate shaft coupling, the angular measuring error caused by the shaft coupling must be added to determine the system accuracy.

For separate shaft coupling ROC 2000 and ROD 200
- Compact dimensions
- Study design
- Typically used with rotary tables, tilting tables, for positioning and synchronization monitoring

For separate shaft coupling ROC 7000, ROD 780, and ROD 880
- High accuracy
- ROC 7000, ROD 780: ±2°
- ROD 880: ±1°
- Ideal for angle measurement on high-precision rotary tables, indexing heads, or measuring machines

For highly accurate applications RON 905
- Very high system accuracy of ±0.4°
- Used with high-accuracy measuring devices and for the inspection of measuring equipment

Interface

<table>
<thead>
<tr>
<th>Absolute ROC 2310</th>
<th>ROC 2380</th>
<th>ROC 2390F</th>
<th>ROC 2390M</th>
<th>Incremental ROC 220</th>
<th>ROD 270</th>
<th>ROD 280</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>EnDat 2.2</td>
<td>EnDat 2.2</td>
<td>Fanuc αi</td>
<td>Mitsubishi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>16384</td>
<td>18000</td>
<td>36000</td>
<td>36000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System accuracy</td>
<td>±2°</td>
<td>±2°</td>
<td>±2°</td>
<td>±2°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤ 3000 rpm</td>
<td>≤ 3000 rpm</td>
<td>≤ 1000 rpm</td>
<td>≤ 1000 rpm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Without shaft coupling
2) 2-fold integrated interpolation
3) 10-fold integrated interpolation
4) DRIVE-CLiQ via EIB, PROFIBUS via Gateway

Drive-CLiQ is a registered trademark of Siemens AG.
MRP, SRP angle encoder modules
Assemblies for high-precision rotary axes

MRP angle encoder module: combination of angle encoder and bearing
Angle encoder modules from HEIDENHAIN are optimally matched combinations of angle encoders and high-precision bearings. They boast high measuring and bearing accuracy, very high resolution, exceptional repeatability, and low starting torque for smooth motion. Their self-contained design with tested and pre-specified characteristics simplifies handling and mounting.

MRP 2000 series
Angle encoder modules with integrated encoder and bearing
- Particularly compact dimensions
- High measuring and bearing accuracy
- Hollow shaft Ø 10 mm

MRP 5000 series
Angle encoder modules with integrated encoder and bearing
- Compact dimensions
- High measuring and bearing accuracy
- Hollow shaft Ø 35 mm

MRP 8000 series
Angle encoder modules with integrated encoder and bearing
- Particularly compact dimensions
- High measuring and bearing accuracy
- Hollow shaft Ø 100 mm

SRP angle encoder module: combination of angle encoder, bearing and motor
SRP angle encoder modules are additionally equipped with an integrated torque motor. They combine a motor, precision bearing, and encoder with very high accuracy in one compact system. The torque motor with its very low cogging torque enables extraordinarily smooth motion control. Neither disruptive cogging torques nor radial forces impair the high guideway accuracy of the bearing.

SRP 5000 series
Angle encoder modules with integrated encoder, bearing, and torque motor
- Compact dimensions
- Torque motor with low cogging torque
- Peak torque: 2.70 Nm
- Rated torque: 0.385 Nm

Mounting option 1

Mounting option 2

<table>
<thead>
<tr>
<th>MRP angle encoder module: combination of angle encoder and bearing</th>
<th>Incremental MRP 2080</th>
<th>Absolute MRP 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>~ 1 Vpp</td>
<td>EnDat 2.2</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>System accuracy</td>
<td>±1”</td>
<td></td>
</tr>
<tr>
<td>Maximum permissible axial load</td>
<td>200 N (centered load, purely static, without additional vibrations or shock loading)</td>
<td></td>
</tr>
<tr>
<td>Radial guideway accuracy</td>
<td>Measured at distance h = 55 mm: ≤ 0.20 µm (without load)</td>
<td></td>
</tr>
<tr>
<td>Wobble of the axis</td>
<td>2.5”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRP 5080</th>
<th>MRP 5010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>~ 1 Vpp</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>30000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±2.5” or ±5”</td>
</tr>
<tr>
<td>Maximum permissible axial load</td>
<td>200 N (centered load, purely static, without additional vibrations or shock loading)</td>
</tr>
<tr>
<td>Radial guideway accuracy</td>
<td>Measured at distance h = 55 mm: ≤ 0.20 µm (without load)</td>
</tr>
<tr>
<td>Wobble of the axis</td>
<td>0.7”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MRP 8080</th>
<th>MRP 8010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>~ 1 Vpp</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>63000</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±1” or ±2”</td>
</tr>
<tr>
<td>Maximum permissible axial load</td>
<td>300 N (centered load, purely static, without additional vibrations or shock loading)</td>
</tr>
<tr>
<td>Radial guideway accuracy</td>
<td>Measured at distance h = 124 mm: ≤ 0.15 µm</td>
</tr>
<tr>
<td>Wobble of the axis</td>
<td>0.7”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SRP angle encoder module: combination of angle encoder, bearing and motor</th>
<th>Incremental SRP 5080</th>
<th>Absolute SRP 5010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>~ 1 Vpp</td>
<td>EnDat 2.2</td>
</tr>
<tr>
<td>Signal periods/revolution</td>
<td>30000</td>
<td>16384</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±2.5” or ±5”</td>
<td></td>
</tr>
<tr>
<td>Maximum permissible axial load</td>
<td>200 N (centered load, purely static, without additional vibrations or shock loading)</td>
<td></td>
</tr>
<tr>
<td>Radial guideway accuracy</td>
<td>Measured at distance h = 55 mm: ≤ 0.20 µm (without load)</td>
<td></td>
</tr>
<tr>
<td>Wobble of the axis</td>
<td>0.7”</td>
<td></td>
</tr>
</tbody>
</table>
The HEIDENHAIN ERP and ERO angle encoders without integral bearing operate without friction and use a circular glass scale with hub as the graduation carrier. They are characterized by their low weight and compact dimensions. They thus permit high accuracies and are designed for integration in machine elements or components.

The attainable system accuracy depends on the eccentricity of the graduation to the drive shaft bearing, as well as the radial runout and wobble of the bearing.

The interferential scanning principle serves as the basis for the high accuracy of the ERP encoders. This makes them particularly attractive for high-precision angle measuring tables and precision devices in angular metrology. Additionally, the HSP 1.0 signal stabilization feature makes the encoders highly resistant to environmental factors.

Applications for the ERO are found in metrology, in compact rotary tables, and in precise, highly dynamic drives.

ERP 1000 series
- Very high resolution and accuracy
- Small mass, low mass moment of inertia
- Very flat design
- Circular scale available as full circle or segment

ERO 1070
- Interface: TTL
- Signal periods/revolution: 23,000
- Accuracy of graduation: ±4°
- Inside diameter D1: 13 mm
- Outside diameter D2: 57 mm
- Mech. permissible speed: ≤ 2600 rpm

ERO 1080
- Interface: 1 Vpp
- Signal periods/revolution: 30,000
- Accuracy of graduation: ±3°
- Inside diameter D1: 32 mm
- Outside diameter D2: 75 mm
- Mech. permissible speed: ≤ 2000 rpm

ERO 6000 series
- Very flat design
- High system accuracy
- Simple mounting

ERO 6070
- Interface: TTL
- Signal periods/revolution: 9000
- Accuracy of graduation: ±3°
- Inside diameter D1: 25 mm
- Outside diameter D2: 71 mm
- Mech. permissible speed: ≤ 1600 rpm

ERO 6080
- Interface: 1 Vpp
- Signal periods/revolution: 18,000
- Accuracy of graduation: ±2°
- Inside diameter D1: 95 mm
- Outside diameter D2: 150 mm
- Mech. permissible speed: ≤ 800 rpm

ERO 6100 series
- For dynamic applications with reduced accuracy requirements
- Application examples include printing machines and handling axes
- Large inside diameter

ERO 6180
- Interface: 1 Vpp
- Signal periods/revolution: 4096
- Accuracy of graduation: ±10°
- Inside diameter D1: 41 mm
- Outside diameter D2: 70 mm
- Mech. permissible speed: ≤ 2500 rpm
ECA, ERA modular angle encoders
Without integral bearing, with optical scanning

The ECA and ERA HEIDENHAIN angle encoders with solid graduation carrier function without integral bearings. They are intended for integration in machine elements or components.

The attainable system accuracy depends on the eccentricity of the graduation to the drive shaft bearing, as well as the radial runout and wobble of the bearing.

The ECA and ERA angle encoders feature a sturdy steel scale drum and are suited for high shaft speeds of up to 10 000 rpm. They are typically found on fast running spindles, rotary tables, and tilting axes.

The ECA 4000 V angle encoders are suitable for vacuum applications in high vacuum (down to 10^{-7} bar).

ECA 4400 series
- High accuracy
- Sturdy design with steel scale drum and METALLUR graduation
- Various drum versions
 - ECA 4xx0: with centering collar
 - ECA 4xx2: with 3-point centering

ERA 4000 series
- High shaft speeds of up to 10 000 rpm
- Sturdy design with steel scale drum and METALLUR graduation
- Axial motion of measured shaft permissible up to ±0.5 mm
- The ERA 4480 C is available with larger diameters or as versions with protective cover
- Various drum versions
 - ERA 4xx0: with centering collar
 - ERA 4xx2: with 3-point centering

Interface
- ECA 4412: EnDat 2.2
- ERA 4492 F: Fanuc oil
- ERA 4492 M: Mitsubishi
- ERA 4492 P: Panasonic

<table>
<thead>
<tr>
<th>Signal periods/revolution</th>
<th>ECA 4412</th>
<th>ERA 4492 F</th>
<th>ERA 4492 M</th>
<th>ERA 4492 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>8195</td>
<td>10 010</td>
<td>11 616</td>
<td>14 003</td>
<td>16 379</td>
</tr>
<tr>
<td>19 996</td>
<td>25 903</td>
<td>37 994</td>
<td>44 000</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy of graduation

<table>
<thead>
<tr>
<th>Inside diameter D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 mm</td>
</tr>
<tr>
<td>80 mm</td>
</tr>
<tr>
<td>120 mm</td>
</tr>
<tr>
<td>120 mm</td>
</tr>
<tr>
<td>150/185 mm</td>
</tr>
<tr>
<td>180/210 mm</td>
</tr>
<tr>
<td>270 mm</td>
</tr>
<tr>
<td>425 mm</td>
</tr>
<tr>
<td>512 mm</td>
</tr>
</tbody>
</table>

Outside diameter D2

| 104.63 mm |
| 127.64 mm |
| 146.2 mm |
| 178.55 mm |
| 208.89 mm |
| 254.93 mm |
| 331.31 mm |
| 484.07 mm |
| 560.46 mm |

Mechanically permissible speed

<table>
<thead>
<tr>
<th>≤ 8500 rpm</th>
<th>≤ 6250 rpm</th>
<th>≤ 5250 rpm</th>
<th>≤ 4500 rpm</th>
<th>≤ 4250 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2500 rpm</td>
<td>≤ 1800 rpm</td>
<td>≤ 1500 rpm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ERA 4412
- Interface 1 Vpp
- Signal period: 20 µm
- Signal period: 40 µm
- Signal period: 80 µm

Incremental
- ERA 4280 C
 - Signal period: 20 µm
- ERA 4480 C
 - Signal period: 40 µm
- ERA 4880 C
 - Signal period: 80 µm

<table>
<thead>
<tr>
<th>Signal periods/revolution</th>
<th>ERA 4280 C</th>
<th>ERA 4480 C</th>
<th>ERA 4880 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 000</td>
<td>16 384</td>
<td>20 000</td>
<td></td>
</tr>
<tr>
<td>6 000</td>
<td>8 192</td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>3 000</td>
<td>4 096</td>
<td>7 000</td>
<td></td>
</tr>
<tr>
<td>1 500</td>
<td>8 192</td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>5 2768</td>
<td>13 000</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>4 096</td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>10 000</td>
<td>13 000</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>14 003</td>
<td>13 000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>25 993</td>
<td>33 131</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>37 994</td>
<td>484.07 mm</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>44 000</td>
<td>560.46 mm</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy of graduation

| ±5” |
| ±3.7” |
| ±3” |
| ±2.5” |
| ±2” |

Inside diameter D1

| 40 mm |
| 70 mm |
| 80 mm |
| 120 mm |
| 150 mm |
| 180 mm |
| 270 mm |
| 425 mm |
| 512 mm |

Outside diameter D2

| 78.75 mm |
| 104.63 mm |
| 127.64 mm |
| 178.55 mm |
| 208.89 mm |
| 254.93 mm |
| 331.31 mm |
| 484.07 mm |
| 560.46 mm |

Mechanically permissible speed

<table>
<thead>
<tr>
<th>≤ 10 000 rpm</th>
<th>≤ 8500 rpm</th>
<th>≤ 6250 rpm</th>
<th>≤ 4500 rpm</th>
<th>≤ 4250 rpm</th>
<th>≤ 3250 rpm</th>
<th>≤ 2500 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1800 rpm</td>
<td>≤ 1500 rpm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) For other drum versions, please refer to our brochure Angle Encoders without Integral Bearings.
ERA modular angle encoders
Without integral bearing, with optical scanning

The HEIDENHAIN ERA angle encoders with steel scale tape as measuring standard function without integral bearings. They are intended for integration in machine elements or components. They are designed to meet the following requirements:
- Large hollow shaft diameters of up to 10 m
- No additional starting torque caused by rotary shaft seals

The attainable system accuracy depends on the machining accuracy of the scale tape carrier diameter, on its radial runout and wobble.

ERA 7000 and ERA 8000 series
- For very large diameters of up to 10 m
- METALLUR steel scale tape

ERA 7000 series
Scale tape is placed in a slot on the inside circumference of the machine element
- ERA 7400 C: full-circle version
- ERA 7401 C: segment version

The attainable system accuracy depends on the machining accuracy of the scale tape carrier diameter, on its radial runout and wobble.

ERA 8000 series
Scale tape is fastened on the circumference of the machine element
- ERA 8400 C: full-circle version
- ERA 8401 C: segment version, scale tape secured with tensioning elements
- ERA 8402 C: segment version, scale tape secured without tensioning elements

ERA 7400 C

Interface
- 1 Vpp; signal period 40 µm (on circumference)

Signal periods/revolution
- 36,000
- 45,000
- 90,000

Accuracy of graduation
- ±3.9°
- ±3.2°
- ±1.6°

Accuracy of the scale tape
- ±3 µm per meter tape length

Diameter D1
- 458.62 mm
- 573.20 mm
- 1146.10 mm

Mech. permissible speed
- ≤ 250 rpm
- ≤ 220 rpm

ERA 8400 C

Interface
- 1 Vpp; signal period 40 µm (on circumference)

Signal periods/revolution
- 36,000
- 45,000
- 90,000

Accuracy of graduation
- ±4.7°
- ±3.9°
- ±1.9°

Accuracy of the scale tape
- ±3 µm per meter tape length

Diameter D1
- 458.04 mm
- 572.63 mm
- 1145.73 mm

Mech. permissible speed
- ≤ 50 rpm
- ≤ 45 rpm
ERM modular angle encoders
Without integral bearing, with magnetic scanning

The ERM modular encoders from HEIDENHAIN with magnetic scanning consist of a magnetized scale drum and a scanning unit. Their MAGNODUR measuring standard and the magnetoresistive scanning principle make them particularly tolerant to contamination.

The attainable system accuracy depends on the eccentricity of the graduation to the drive shaft bearing, as well as the radial runout and wobble of the bearing.

Typical fields of application include machines and equipment with large hollow shaft diameters in environments with large amounts of airborne particles and liquids, for example:

• Rotary and tilting axes for ERM 2280
• C axes on lathes for ERM 2410, ERM 2420 and ERM 2480
• Main spindles on milling machines for ERM 2484, ERM 2485 and ERM 2984

ERM 2200 series
• High graduation accuracy
• Distance-coded reference marks
• Drum fastening with axial screws
• ERM 2283: small interpolation error, no reversal error

ERM 2400 series
• Distance-coded reference marks are possible
• Drum fastening with axial screws
• Large selection of drum diameters

ERM 2480 series
• Especially compact dimensions for limited installation space
• High mechanically permissible shaft speeds and therefore particularly well suited for spindles
• Drum fastening by axial clamping

Incremental
ERM 2280 (grating period = 200 µm)
ERM 2283

Interface
ERM 2280
ERM 2283

<table>
<thead>
<tr>
<th>Signal periods/revolution</th>
<th>1200</th>
<th>1440</th>
<th>1800</th>
<th>2048</th>
<th>2400</th>
<th>2800</th>
<th>4096</th>
<th>5200</th>
<th>7200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of graduation</td>
<td>±10”</td>
<td>±8.5”</td>
<td>±7”</td>
<td>±6”</td>
<td>±5.5”</td>
<td>±5”</td>
<td>±3.5”</td>
<td>±2”</td>
<td>±1.5”</td>
</tr>
<tr>
<td>Inside diameter D1</td>
<td>40 mm</td>
<td>55 mm</td>
<td>70 mm</td>
<td>80 mm</td>
<td>105 mm</td>
<td>130 mm</td>
<td>180 mm</td>
<td>280 mm</td>
<td>380 mm</td>
</tr>
<tr>
<td>Outside diameter D2</td>
<td>75.44 mm</td>
<td>90.53 mm</td>
<td>113.16 mm</td>
<td>128.75 mm</td>
<td>150.88 mm</td>
<td>176.03 mm</td>
<td>257.5 mm</td>
<td>326.9 mm</td>
<td>452.64 mm</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤19 000 rpm</td>
<td>≤18 500 rpm</td>
<td>≤14 500 rpm</td>
<td>≤13 000 rpm</td>
<td>≤10 500 rpm</td>
<td>≤9 000 rpm</td>
<td>≤6 000 rpm</td>
<td>≤4 500 rpm</td>
<td>≤3 000 rpm</td>
</tr>
</tbody>
</table>

Incremental
ERM 2410 (grating period = 400 µm)
ERM 2420
ERM 2480

Interface
ERM 2410: EnDat 2.2; ERM 2420: TTL; ERM 2480: 1 Vpp

<table>
<thead>
<tr>
<th>Signal periods/revolution</th>
<th>600</th>
<th>720</th>
<th>900</th>
<th>1024</th>
<th>1200</th>
<th>1400</th>
<th>2048</th>
<th>2600</th>
<th>3600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of graduation</td>
<td>±11”</td>
<td>±10”</td>
<td>±8”</td>
<td>±7”</td>
<td>±6”</td>
<td>±5.5”</td>
<td>±4”</td>
<td>±3.5”</td>
<td>±3”</td>
</tr>
<tr>
<td>Inside diameter D1</td>
<td>40 mm</td>
<td>55 mm</td>
<td>70 mm</td>
<td>80 mm</td>
<td>105 mm</td>
<td>130 mm</td>
<td>180 mm</td>
<td>280 mm</td>
<td>380 mm</td>
</tr>
<tr>
<td>Outside diameter D2</td>
<td>75.44 mm</td>
<td>90.53 mm</td>
<td>113.16 mm</td>
<td>128.75 mm</td>
<td>150.88 mm</td>
<td>176.03 mm</td>
<td>257.5 mm</td>
<td>326.9 mm</td>
<td>452.64 mm</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤19 000 rpm</td>
<td>≤18 500 rpm</td>
<td>≤14 500 rpm</td>
<td>≤13 000 rpm</td>
<td>≤10 500 rpm</td>
<td>≤9 000 rpm</td>
<td>≤6 000 rpm</td>
<td>≤4 500 rpm</td>
<td>≤3 000 rpm</td>
</tr>
</tbody>
</table>

Incremental
ERM 2484 (grating period = 400 µm)
ERM 2984 (grating period = 1000 µm)

Interface
ERM 2484
ERM 2984

<table>
<thead>
<tr>
<th>Signal periods per rev.</th>
<th>512</th>
<th>600</th>
<th>800</th>
<th>1024</th>
<th>192</th>
<th>256</th>
<th>300</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy of graduation</td>
<td>±17”</td>
<td>±14”</td>
<td>±10”</td>
<td>±9”</td>
<td>±6”</td>
<td>±51”</td>
<td>±44”</td>
<td>±33”</td>
</tr>
<tr>
<td>Inside diameter D1</td>
<td>40 mm</td>
<td>55 mm</td>
<td>80 mm</td>
<td>100 mm</td>
<td>40 mm</td>
<td>55 mm</td>
<td>60 mm</td>
<td>100 mm</td>
</tr>
<tr>
<td>Outside diameter D2</td>
<td>64.37 mm</td>
<td>75.44 mm</td>
<td>113.16 mm</td>
<td>128.75 mm</td>
<td>58.06 mm</td>
<td>77.41 mm</td>
<td>90.72 mm</td>
<td>120.96 mm</td>
</tr>
<tr>
<td>Mech. permissible speed</td>
<td>≤42 000 rpm</td>
<td>≤36 000 rpm</td>
<td>≤22 000 rpm</td>
<td>≤20 000 rpm</td>
<td>≤47 000 rpm</td>
<td>≤36 000 rpm</td>
<td>≤29 000 rpm</td>
<td>≤16 000 rpm</td>
</tr>
</tbody>
</table>

For other drum versions, please refer to our brochure Modular Angle Encoders with Magnetic Scanning
ECN, EQN, ERN rotary encoders
With integral bearing and mounted stator coupling
IP64 protection

HEIDENHAIN ECN, EQN, and ERN rotary encoders with integral bearing and stator coupled encoder operate by photoelectric scanning. They are characterized by their simple mounting and short overall length. Possible applications range from simple measuring tasks to position and speed control on servo drives. The hollow shaft of these encoders is slid directly onto and fastened to the shaft to be measured. During angular acceleration of the shaft, the stator coupling must absorb only that torque resulting from friction in the bearing. Rotary encoders with stator coupling therefore provide excellent dynamic performance and a high natural frequency.

<table>
<thead>
<tr>
<th>ECN/ERN/ERN 1000 series</th>
<th>Absolute</th>
<th>Incremental</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN 1013</td>
<td>ECN 1025</td>
<td>ECN 1035</td>
</tr>
<tr>
<td>ECN 1023</td>
<td>ECN 1035 S</td>
<td>ECN 1035 S</td>
</tr>
<tr>
<td>Interface</td>
<td>EnDat 2.2 with</td>
<td>EnDat 2.2 with</td>
</tr>
<tr>
<td></td>
<td>1 Vpp; SSI</td>
<td>1 Vpp; SSI</td>
</tr>
<tr>
<td>Position values/revolution</td>
<td>8192 (13 bits)</td>
<td>8388608 (23 bits)</td>
</tr>
<tr>
<td>Revolutions</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Line count</td>
<td>512</td>
<td>–</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>DC 3.6 V to 14 V; DC 4.75 V to 30 V</td>
<td>DC 3.6 V to 14 V; DC 10 V to 28.8 V</td>
</tr>
<tr>
<td></td>
<td>DC 5 V</td>
<td>DC 10 V to 30 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECN/ERN/ERN 400 series</th>
<th>Absolute</th>
<th>Incremental</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN 413</td>
<td>ECN 425</td>
<td>ECN 424 S</td>
</tr>
<tr>
<td>ECN 425 F</td>
<td>ECN 424 M</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td>EnDat 2.2 with</td>
<td>EnDat 2.2 with</td>
</tr>
<tr>
<td></td>
<td>1 Vpp; SSI</td>
<td>1 Vpp; SSI</td>
</tr>
<tr>
<td>Position values/revolution</td>
<td>8192 (13 bits)</td>
<td>8192 (13 bits)</td>
</tr>
<tr>
<td>Revolutions</td>
<td>–</td>
<td>4096 (12 bits)</td>
</tr>
<tr>
<td>Line count</td>
<td>512 or 2048</td>
<td>512 or 2048</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>3.6 V to 14 V; 4.75 V to 30 V</td>
<td>3.6 V to 14 V; 4.75 V to 30 V</td>
</tr>
<tr>
<td></td>
<td>9 V to 36 V; 10 V to 30 V</td>
<td>9 V to 36 V; 10 V to 30 V</td>
</tr>
<tr>
<td></td>
<td>3.6 V to 14 V; 10 V to 28.8 V</td>
<td>3.6 V to 14 V; 10 V to 28.8 V</td>
</tr>
<tr>
<td></td>
<td>DC 5 V; 10 V to 30 V</td>
<td>DC 5 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECN/ERN/ERN 100 series</th>
<th>Absolute</th>
<th>Incremental</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECN 113</td>
<td>ECN 125</td>
<td>Incremental</td>
</tr>
<tr>
<td></td>
<td>ERN 120</td>
<td>ERN 130</td>
</tr>
<tr>
<td>Interface</td>
<td>EnDat 2.2 with</td>
<td>EnDat 2.2</td>
</tr>
<tr>
<td></td>
<td>1 Vpp; SSI</td>
<td>1 Vpp; SSI</td>
</tr>
<tr>
<td>Position values/revolution</td>
<td>8192 (13 bits)</td>
<td>3355432 (25 bits)</td>
</tr>
<tr>
<td>Revolutions</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Line count</td>
<td>2048</td>
<td>–</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>DC 3.6 V to 14 V</td>
<td>DC 3.6 V to 14 V</td>
</tr>
<tr>
<td></td>
<td>DC 5 V</td>
<td>DC 5 V</td>
</tr>
<tr>
<td></td>
<td>DC 10 V to 30 V</td>
<td>DC 5 V</td>
</tr>
</tbody>
</table>
ECN, EQN, ERN rotary encoders
With integral bearing and mounted stator coupling
IP40 protection

The ECN, EQN, and ERN photoelectric rotary encoders from HEIDENHAIN with IP40 protection are specially designed for integration in motors. Bearings and mounted stator coupling are integrated. Absolute rotary encoders and versions with commutation tracks are available for synchronous motors. The taper shaft or the blind hollow shaft is fastened directly to the shaft to be measured. This ensures an extremely stiff coupling that permits exceptionally high dynamic performance of the drive. The stator coupling is designed to be fastened on a plane surface or a location hole and permits fast, simple mounting.

ECN/EQN 1100 series
- Miniaturized version
- Blind hollow shaft Ø 6 mm with positive-fit element
- Housing outside diameter 35 mm
- Typical natural frequency \(f_N \) of the encoder coupling: 1000 Hz
- Mech. permissible speed: 12,000 rpm
- Fault exclusion of the mechanical coupling for functional safety available

ECN/EQN 1100
- Blind hollow shaft Ø 8 mm
- Housing outside diameter 35 mm
- Stator coupling with bolt-hole circle Ø 40 mm
- Typical natural frequency \(f_N \) of coupling: 1000 Hz
- Mech. permissible speed: 6000 rpm
- IP60 protection

ECN/EQN/ERN 1300 series
- Compact dimensions
- 1:10 taper shaft with 9.25 mm functional diameter for extremely stiff connection
- Housing outside diameter 56 mm.
- The stator coupling is suited for location holes with 65 mm inside diameter
- Typical natural frequency \(f_N \) of the encoder coupling: 1800 Hz
- Mech. permissible speed
- ERN/ECN: 15,000 rpm
- EQN: 12,000 rpm
- IP40 protection when mounted
- Fault exclusion of the mechanical coupling for functional safety available

ERN 1123
- Blind hollow shaft Ø 8 mm
- Housing outside diameter 35 mm
- Stator coupling with bolt-hole circle Ø 40 mm
- Typical natural frequency \(f_N \) of coupling:
- Mech. permissible speed: 6000 rpm
- IP60 protection

Absolut值 values
<table>
<thead>
<tr>
<th>ECN 1113</th>
<th>EQN 1125</th>
<th>ECN 1123</th>
<th>EQN 1135</th>
<th>Incremental ERN 1123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>EnDat 2.2</td>
<td>EnDat 2.2</td>
<td>DRIVE-CLIQ</td>
<td>TTL</td>
</tr>
<tr>
<td>Position values/revolution</td>
<td>8192 (13 bits)</td>
<td>8388608 (23 bits)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Revolutions</td>
<td>–</td>
<td>4096 (12 bits)</td>
<td>–</td>
<td>4096 (12 bits)</td>
</tr>
<tr>
<td>Line count</td>
<td>512</td>
<td>–</td>
<td>500 to 8192</td>
<td>–</td>
</tr>
<tr>
<td>Commutation signals</td>
<td>–</td>
<td>Block commutation</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>DC 3.6 V to 14 V</td>
<td>E CN 1123, E QN 1135: DC 3.6 V to 14 V; E CN 1123 S, E QN 1135 S: DC 10 V to 28.8 V</td>
<td>DC 5 V</td>
<td>DC 5 V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>≤ 115 °C</td>
<td>E CN 1123, E QN 1135: ≤ 115 °C; E CN 1123 S, E QN 1135 S: ≤ 95 °C</td>
<td>≤ 90 °C</td>
<td>≤ 90 °C</td>
</tr>
</tbody>
</table>

1) Includes EnDat 2.1 command set; PROFIBUS DP via gateway
2) Also available with functional safety
3) Three block commutation tracks with 90°, 120°, or 180° mech. phase shift

Eq. 3.6 V to 14 V

DRIVE-CLIQ is a registered trademark of Siemens AG.
ROC, ROQ, ROD rotary encoders

With integral bearing, for separate shaft coupling

HR handwheel

The ROC, ROQ, and ROD photoelectric rotary encoders from HEIDENHAIN have integrated bearings and are sealed. The degree of protection is IP64 to IP66, depending on the version. They are robust and compact.

These encoders are coupled by the rotor to the measured shaft through a separate coupling that compensates axial motion and misalignment between the encoder shaft and measured shaft.

ROC/ROQ/ROD 400 series

- Industrial standard regarding dimensions and output signals
- IP67 protection at housing, IP64 at shaft inlet (IP66 upon request)
- Mounting via synchro flange or clamping flange
- Shaft diameter 6 mm with synchro flange
- 10 mm with clamping flange
- Preferred types with fast delivery (see Rotary Encoders brochure or ask HEIDENHAIN)
- Fault exclusion of the mechanical coupling for functional safety available

ERN 1000 series

- Miniaturized dimensions for installation in small devices or in limited installation space
- Mounting by synchro flange
- Shaft diameter 4 mm

ROC/ROQ/ROD 1000 series

- Industrial standard regarding dimensions and output signals
- IP67 protection at housing, IP64 at shaft inlet (IP66 upon request)
- Mounting via synchro flange or clamping flange
- Shaft diameter 6 mm with synchro flange
- 10 mm with clamping flange
- Preferred types with fast delivery (see Rotary Encoders brochure or ask HEIDENHAIN)
- Fault exclusion of the mechanical coupling for functional safety available

ROC 1010

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp
- SSI

ROQ 1025

- Incremental
- DC 3.6 V to 14 V
- DC 10 V to 28.8 V
- EnDat 2.2
- 1 Vpp
- SSI

ROD 1023

- Absolute
- DC 3.6 V to 14 V
- DC 10 V to 28.8 V
- EnDat 2.2
- 1 Vpp
- SSI

ROD 1000

- Incremental
- DC 3.6 V to 14 V
- DC 10 V to 28.8 V
- EnDat 2.2
- 1 Vpp
- SSI

ROD 420

- Absolute
- DC 3.6 V to 14 V
- 1 Vpp

ROD 425

- Incremental
- DC 3.6 V to 14 V
- 1 Vpp

ROC 413

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 425

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 426

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 420

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROC 424

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 425

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 426

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 426

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROC 424S

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 425S

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 436

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 436

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 466

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 466

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 486

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 486

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 1000

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 1000

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 1025

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 1025

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 1030

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 1030

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 1070

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 1070

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROD 1120

- Absolute
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

ROQ 1120

- Incremental
- DC 3.6 V to 14 V
- EnDat 2.2
- 1 Vpp

HR handwheel

- Compact dimensions
- Sturdy design
- Mechanical detent

HR electronic handwheel

Features an integral bearing and mechanical detent. It was conceived for use in portable or stationary housings, e.g. for positioning units or automation applications.

Designations

- ROC: Rod photoelectric rotary encoder with synchro flange
- ROQ: Rod photoelectric rotary encoder with clamping flange
- ROD: Rod photoelectric rotary encoder
- HR: Electronic handwheel

Interface

- EnDat 2.2 (with 1 Vpp; SSI)
- PROFIBUS DP; PROFINET
- DRIVE-CLiQ

Position values/revolutions

- ROC/RQ/RQD 1000 (13 bits)
- ROC/RQ/RQD 400 (12 bits)
- ROC/RQ/RQD 426 (12 bits)
- ROC/RQ/RQD 425 (12 bits)
- ROC/RQ/RQD 436 (12 bits)
- ROC/RQ/RQD 486 (12 bits)
- ROC/RQ/RQD 1025 (23 bits)

Revolutions

- ROC/RQ/RQD 1000 (12 bits)
- ROC/RQ/RQD 400 (12 bits)
- ROC/RQ/RQD 426 (12 bits)
- ROC/RQ/RQD 425 (12 bits)
- ROC/RQ/RQD 436 (12 bits)
- ROC/RQ/RQD 486 (12 bits)

Supply voltage

- ROC/RQ/RQD 1000 (3.6 V to 14 V)
- ROC/RQ/RQD 400 (3.6 V to 14 V)
- ROC/RQ/RQD 426 (3.6 V to 14 V)
- ROC/RQ/RQD 425 (3.6 V to 14 V)
- ROC/RQ/RQD 436 (3.6 V to 14 V)
- ROC/RQ/RQD 486 (3.6 V to 14 V)

Line count/signal periods

- ROC/RQ/RQD 1000 (100 to 1000)
- ROC/RQ/RQD 400 (50 to 5000)
- ROC/RQ/RQD 426 (up to 10000)
- ROC/RQ/RQD 425 (up to 10000)
- ROC/RQ/RQD 436 (up to 10000)
- ROC/RQ/RQD 486 (up to 10000)

1) Also available with functional safety

2) Includes EnDat 2.1 command set; PROFIBUS DP via gateway

DRIVE-CLiQ is a registered trademark of Siemens AG.
ECI, EQI, EBI, ERO rotary encoders

Without integral bearing

The photoelectric ERO modular rotary encoders from HEIDENHAIN consist of a graduated disk with hub and a scanning unit. They are particularly well suited for limited installation space or for applications where there must be no friction.

Compared with optical rotary encoders without integral bearings, inductive rotary encoders are particularly robust and have large mounting tolerances.

The inductive rotary encoders ECI/ECI/EBI 1300 series are mechanically compatible with the corresponding EnDat photoelectric encoders: the shaft is fastened with a central screw. The stator of the encoder is fastened by several screws.

The ECI/EQI 100 and ECI/EQI 4000 inductive rotary encoders have a particularly small outside diameter with a large shaft opening. The encoders were conceived for simple axial mounting.

The correct installation of the rotary encoders without integral bearing can be inspected with the HEIDENHAIN PWM 21 or PWT 101 measuring and testing devices.

ECI 1119: 262 144 (18 bits)
ECI 1119: 1 V

ECI/EQI/EQI 1100 series
- Miniature size
- Simple mounting without adjustment
- Blind hollow shaft Ø 6 mm
- EBI 1135: multiturn function via battery-buffered revolution counter
- Version featuring mounting compatibility with ECN/EQN 1100
- Fault exclusion of the mechanical coupling for functional safety
- Synchro flange for variable mounting

ECI/EQI/EQI 1300 series
- Simple mounting without adjustment
- Blind hollow shaft
- EBI 1335: multiturn function via battery-buffered revolution counter
- Version featuring mounting compatibility with ECN/EQN 1300 with tapered shaft or blind hollow shaft available upon request
- Fault exclusion of the mechanical coupling for functional safety

ECI/EQI/EQI 100 series
- Especially flat design
- Hollow through shaft Ø 30, 38, 50 mm
- EBI 1335: multiturn function via battery-buffered revolution counter

ECI/EQI 4000 series
- Flat design
- Hollow through shaft Ø 90, 180 mm
- EBI 4010: multiturn function via battery-buffered revolution counter

ECI/EQI 2200 series
- Compact dimensions
- For shaft diameters of up to 12 mm

ECI/EQI 2000 series
- Minimized modular rotary encoders for measured shafts of up to Ø 8 mm
- Special integral mounting aid
- With cover cap

ECI/EQI/EQI 1100 series
- Miniature size
- Simple mounting without adjustment
- Blind hollow shaft Ø 6 mm
- EBI 1135: multiturn function via battery-buffered revolution counter
- Version available featuring mounting compatibility with ECN/EQN 1100
- Fault exclusion of the mechanical coupling for functional safety

ECI/EQI/EQI 1300 series
- Simple mounting without adjustment
- Blind hollow shaft
- EBI 1335: multiturn function via battery-buffered revolution counter
- Version featuring mounting compatibility with ECN/EQN 1300 with tapered shaft or blind hollow shaft available upon request
- Fault exclusion of the mechanical coupling for functional safety

Synopsis

<table>
<thead>
<tr>
<th>Model</th>
<th>Interface</th>
<th>Line count</th>
<th>Mech. permissible speed</th>
<th>Shaft diameter D</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERO 1225</td>
<td>TTL</td>
<td>524 288 (19 bits)</td>
<td>≤ 25 000 rpm</td>
<td>10 mm, 12 mm</td>
</tr>
<tr>
<td>ERO 1285</td>
<td>TTL</td>
<td>1 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERO 1420</td>
<td>TTL</td>
<td>512 1000 1024</td>
<td>≤ 30 000 rpm</td>
<td>4 mm, 6 mm, 8 mm</td>
</tr>
<tr>
<td>ERO 1470</td>
<td>TTL</td>
<td>512 1000 1024</td>
<td>≤ 15 000 rpm</td>
<td>≤ 12 000 rpm</td>
</tr>
<tr>
<td>ERO 1480</td>
<td>TTL</td>
<td>512 1000 1024</td>
<td>≤ 12 000 rpm</td>
<td>≤ 12 000 rpm</td>
</tr>
</tbody>
</table>

1) Also available with functional safety
2) Multinturn function via battery-buffered revolution counter
3) Also available with DRIVE-CLiQ interface
Machine tool control

Controls for milling machines
With its TNC controls, HEIDENHAIN offers a complete product line for all common types of machines in the area of milling: from a simple three-axis CNC milling machine to a highly complex machine with up to 23 axes—a TNC control is always the right choice. Thanks to their flexible operational design and practical functions, the TNCs are particularly suitable for the following applications:

- Simple milling, drilling, and boring operations
- Machining in a tilted working plane
- Complex 6-axis operations
- HSC operations
- Milling/turning operations

TNC controls are versatile and offer the right programming function for any task. Thanks to its HEIDENHAIN Klartext format, the user need not learn G codes or special programming languages. The control “speaks” with him with easily understandable questions and prompts. Ease of use is also promoted by clear, unambiguous key symbols and names. Each key has only one function. Even if you are used to G-code programming, however, the TNC is still the right control—you can enter G-code address letters simply over soft keys.

TNC part programs have long lives because they are upwardly compatible. Programs from older TNCs can usually also run on the new models. When moving up to a more advanced TNC, the user merely builds on what he already knows.

Controls for lathes
Lathe controls from HEIDENHAIN have been proving themselves for years both on standard and complex lathes as well as on turning centers.

Many shop-compatible functions support you optimally during:

- Conventional lathe operations
- Operations with driven tools
- Machining with the C and Y axes
- Full-surface machining with dual spindles
- Machining with the B axis

HEIDENHAIN lathe controls are extremely flexible: whether you need only single cycles, short program sequences, or complete NC programs—you only need to select the appropriate operating mode.

Program creation with smart.Turn is particularly easy and convenient. The straightforward fillable-form input provides graphical support, meaningful dialogs, and a logical check of entries. You can also reuse NC programs of older HEIDENHAIN lathe controls, such as the CNC PILOT 4290, on the CNC PILOT 640. With a convenient import filter you can simply load the programs into the new control, and then continue using them on the CNC PILOT 640.

Quickly and easily to the finished part
The operational design of the milling and lathe controls is tailored to the needs of the user and therefore offers you the greatest possible flexibility in program creation. Where programming at the machine, all required inputs are guided by practice-oriented prompts and questions while highly expressive help images support you. Standard operations and even complex applications are on call as a large variety of cycles for real-world machining, coordinate transformations, or for setup.

The HEIDENHAIN controls can be programmed remotely just as well—for example on a CAD/CAM system or at a HEIDENHAIN programming station.

You can also open DXF files that were created on a separate CAD system directly on the control and extract contours and machining positions from them. This not only saves time otherwise spent on programming and testing, but you can also be sure that the adopted data is exactly in accordance with the design engineer’s specifications.

User-friendly and practical
Thanks to the robust design optimized for high-quality machining, HEIDENHAIN controls are ideally suited for a harsh work-day environment. The clearcut screen displays informational notes, questions, prompts, program steps, graphics, and soft-key rows. All texts are available in numerous languages. Graphic illustrations simplify programming and provide valuable aid for verifying the program during simulation.

High quality and productivity
Thanks to intelligent motion control, HEIDENHAIN controls enable short machining times with perfect workpiece surfaces and very high workpiece accuracy. The bottom line is an increase in productivity: unit costs are reduced without affecting accuracy and surface quality.

Automating manual operations
You can start working with the HEIDENHAIN controls even before writing a complete part program. Simply machine a part step by step—switching as you want between manual operation and automatic positioning.

Manufacturing complex components precisely
Regardless of whether the workpieces are simple or complex—HEIDENHAIN controls offer the appropriate functions. With them, neither are operations in a tilted plane a challenge, nor are multi-side or full-surface machining. Simultaneous machining with up to five axes is an especially strong point of HEIDENHAIN controls. With special control strategies, functions for process monitoring, and compensation of production-induced disturbances, you can also manufacture components with complex geometries exactly, with process reliability, and efficiently.
Besides milling, the TNC 640 from HEIDENHAIN is also capable of combined milling and turning operations. It is particularly well suited for milling, turning, HSC machining, and 5-axis machining. The shop-oriented and versatile control features numerous functions. It is especially attractive for the following areas of application:

- Universal milling machines
- Combined milling-turning machines
- High speed milling
- Five-axis machining with swivel head and rotary table
- Five-axis machining on very large machines
- Boring mills
- Machining centers and automated machining

The TNC 640 features optimized motion control, short block processing times, and special closed loop control strategies. Together with its uniform digital design and its integrated digital drive control including inverters, it enables you to reach very high machining speeds and the best possible contour accuracy—particularly when machining 3-D contours.

You can program turning contours with the TNC 640 in the familiar HEIDENHAIN Klartext format. Beyond this, you have typical contour elements for turning (recesses, undercuts, thread undercuts) as well as cycles for complex turning operations.

The optimized user interface of the TNC 640 gives you a fast overview: various color codes, standardized table editors, and smartSelect—the dialog-guided fast selection of functions—assist you while you work.

TNC 640 contouring control

For milling machines, milling-turning machines, and machining centers

Axes
- 24 control loops (22 with functional safety), of which up to 4 can be configured as spindles

Interpolation
- Linear in up to 5 axes with Tool Center Point Management (TCPM)
- Circular in up to 3 axes with tilted working plane
- Helical
- Cylinder surface
- Rigid tapping

Program entry
- HEIDENHAIN Klartext conversational format, ISO (G codes)

Programming support
- TNCguide presents user information directly on the control

CAD import
- Loading of contours from 3-D models

Program memory
- HDR hard disk or SSDR solid state disk, at least 21 GB

Position entry
- Nominal positions in Cartesian or polar coordinates, dimensions absolute or incremental, in mm or inches; actual position capture

Input resolution and display step
- To 0.1 µm or 0.0001"; optionally to 0.01 µm or 0.00001"

Block-processing time
- 0.5 ms (3-D straight line without radius compensation at 100 % PLC utilization)

Turning functions
- Turning tool data management
- Tool-tip radius compensation
- Constant cutting speed
- Toggling between milling and turning operations

High-speed cutting
- Motion control with minimum jerk

FK free contour programming
- HEIDENHAIN Klartext conversational format with graphical support

Coordinate transformation
- Shifting, rotating, mirroring, scaling (axis specific)
- Tilting the working plane, PLANE function

Canned cycles
- For drilling, milling, turning, interpolation turning, grinding, hobbing, and for cylinder surface machining; data input with graphical support

Touch probe cycles
- For tool measurement, workpiece alignment, workpiece measurement, and presetting

Graphics
- For programming and program verification

Parallel operation
- Program run and programming with graphics

Data interface
- Ethernet 1000BASE-T; USB 3.0; USB 2.0; RS-232-C/V.24 (max. 115 200 bauds)

Remote control and diagnosis
- TeleService

Screen
- 15-inch or 19-inch screen with operating keys, 19-inch or 24-inch screen for multitouch operation

Axis feedback control
- Feedforward control or operation with following error
- Integrated digital drive control including inverter

Adaptive feed control
- AFC adjusts the contouring feed rate to the spindle power

Dynamic collision monitoring (DCM)
- Dynamic monitoring of the working space for possible collisions with machine components

Accessories
- HR electronic handwheels
- TS workpiece touch probe and TT tool touch probe

1) This function requires adaptation by the machine tool builder
2) Software option
For further functions and differences in function, see the product documentation
TNC 620, TNC 320 contouring controls
For milling machines

The HEIDENHAIN TNC 620 and TNC 320 controls are compact but versatile contouring controls. Thanks to their flexible operation—shop-oriented programmability with the HEIDENHAIN Klartext format or offline programming—and their scope of features, they are especially suited for use on universal milling, drilling, and boring machines for the following:

• Series and single-part production
• Tool making
• Machine building
• Research and development
• Prototypes and pilot plants
• Repair departments
• Training and education facilities

Thanks to its digital design, the TNC 620 has control over the machine’s entire drive system. Not only does the field-proven digital drive technology from HEIDENHAIN make high contour fidelity and rapid machining at high speeds possible, but also all control components of the TNC 620 are connected via digital interfaces. The TNC 620 is available in a touch-screen version as well as in a screen and keyboard version.

Because of its analog outputs (which also provide nominal speed values), the TNC 320 is well suited for retrofitting on machine tools.

Axes

TNC 620
- 8 control loops, of which up to 2 are configurable as spindles

TNC 320
- 6 control loops, of which up to 2 are configurable as spindles

Interpolation

TNC 620
- Linear: in 4 (optionally 5) main axes
- Circular: in 2 (optionally 3) axes
- Helical, superimposition of circular and straight paths
- Cylinder surface

TNC 320
- Linear in 4 main axes
- Circular in 2 axes
- Helical, superimposition of circular and straight paths
- Cylinder surface

Program entry

TNC 620
- HEIDENHAIN Klartext conversational format
- ISO (G codes: input via soft keys or via external USB keyboard)
- FK free programming of contours (software option on the TNC 620)

Programming support

TNCguide presents user information directly on the TNC.

CAD import

Loading of contours from 3-D models

Program memory

1.8 GB CFR memory card

Touch probe cycles

For tool measurement, workpiece alignment, workpiece measurement, and workpiece presetting (software option on the TNC 620)

Graphics

For programming and program verification (software option on the TNC 620); graphic support with cycle programming

Parallel operation

Programming during program run, program-run graphics (software option on the TNC 620)

Data interface

Ethernet 1000BASE-T; USB 3.0; USB 2.0; RS-232-C/V.24, and RS-422/V.11 (max. 115200 bauds)

Screen

15-inch screen with operating keys or 19-inch screen for multitouch operation (portrait)

Axis feedback control

Feedforward control or operation with following error

Interfacing to the machine

Via integrated programmable logic controller (PLC)

Accessories

HR electronic handwheels

TS workpiece touch probe and TT tool touch probe

Software option
The TNC 128 from HEIDENHAIN is a compact but versatile straight-cut control for three servo axes and servo spindle. A further servo axis is an option. Thanks to its simple operation and scope of features, it is especially well suited for use on universal milling, drilling, and boring machines for the following possibilities:

- Series and single-part production
- Machine building
- Prototypes and pilot plants
- Repair departments
- Training and education facilities

Because of its analog output that also provides nominal speed values, the TNC 128 is well suited for retrofitting on machine tools.

TNC 128

Axes
6 control loops, of which up to 2 are configurable as spindles

Program entry
HEIDENHAIN Klartext conversational format

Program memory
1.8 GB CFR memory card

Position entry
- Positions in Cartesian or polar coordinates
- Incremental or absolute dimensions
- Display and entry in mm or inches

Input resolution and display step
To 0.1 µm or 0.0001"

Block processing time
6 ms

Coordinate transformation
Shifting, rotating, mirroring, scaling (axis specific)

Fixed cycles
- Drilling, tapping, reaming, and boring
- Cycles for hole patterns, facing of flat surfaces
- Pocket, stud, and slot milling

Touch probe cycles
Touch probe calibration and presetting

Graphics
For programming and program verification; graphic support for cycle programming

Parallel operation
Program run and programming; program-run graphics

Data interface
- Ethernet 1000BASE-T
- USB 3.0; USB 2.0
- RS-232-C/V.24; max. 115200 bauds

Screen
12.1-inch screen with operating keys

Axis feedback control
Feedforward control or operation with following error

Interfacing to the machine
Via integrated programmable logic controller (PLC); inputs/outputs expandable with PL 510

Accessories
- HR electronic handwheels
- TS or KT workpiece touch probe and TT tool touch probe
CNC PILOT 640 contouring control
For lathes and turning-milling machines

The CNC PILOT 640 offers you the right support thanks to its flexible design and versatile programming capabilities — regardless of whether you are manufacturing single parts or batches, simple or complex workpieces. The CNC PILOT 640 is characterized by its simple operation and programming. It is quickly learned and requires minimum training time.

The CNC PILOT 640 was designed for CNC lathes and is ideal for both horizontal and vertical lathes as well as for vertical boring and turning mills.

The CNC PILOT 640 supports lathes with main and counter spindle, one slide (X and Z axis), C axis or positionable spindle, driven tools, and machines with Y and B axes.

Regardless of whether you are turning simple parts or complex workpieces, the CNC PILOT 640 provides you with the benefits of graphical contour input and convenient programming with smart.Turn. With the TURN PLUS software option, you can even create an NC program at the touch of a button. You only need to describe the contour, the material, and the clamping fixtures beforehand. TURN PLUS does everything else automatically.

If you program with variables, control special machine components, or use externally created programs, etc., simply switch to DIN PLUS. With DIN PLUS you'll find the fitting solution for your special tasks.

The CNC PILOT 640 also supports multi-channel machining. Different machining steps can then be performed simultaneously using multiple slides.

<table>
<thead>
<tr>
<th>CNC PILOT 640</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axes</td>
</tr>
</tbody>
</table>
| **Interpolation** | • Straight line: in 2 principal axes, optional in 3 principal axes
| | • Circle: in 2 axes, optional additional linear interpolation in the third axis
| | • C1/C2 axis: interpolation of X and Z linear axes with the C1/C2 axis
| | • B axis: 5-axis interpolation between X, Z, Y, B, and C axes |
| **Program entry** | smart.Turn, DIN PLUS, Teach-In mode |
| **Programming aids** | TURNguide presents user information directly on the control |
| **DXF import** | Loading of DXF contours |
| **Program memory** | 1.8 GB CFR memory card |
| **Position entry** | Nominal positions in Cartesian or polar coordinates, absolute or incremental dimensions, in mm or inches; actual position capture |
| **Input resolution and display step** | X axis: 0.5 µm, diameter: 1 µm
| | U, V, W, Y, Z axes: 1 µm
| | B, C1/C2 axes: 0.001° |
| **Block processing time** | 1.5 ms (3-D straight line without radius compensation at 100 % PLC utilization) |
| **Setup functions** | • Setting the workpiece datum
| | • Defining the tool change point
| | • Defining the protection zone |
| **Interactive Contour Programming ICP** | Contour definition with graphic support |
| **Canned cycles** | Stock removal, recessing, recess turning, engraving, thread cutting, helical slot milling, boring, drilling, tapping, deburring, trochoidal milling, holding, eccentric and non-circular turning |
| **Touch-probe cycles** | For tool and workpiece measurement as well as presetting |
| **Graphics** | For programming and program verification |
| **Parallel operation** | Program run and programming with graphics |
| **Data interface** | Ethernet 1000BASE-T; USB 3.0; USB 2.0; RS-232-C/V.24 (max. 115200 bauds) |
| **Remote control and diagnosis** | TeleService |
| **Screen** | 15.6-inch or 19-inch screen for multitouch operation |
| **Axis feedback control** | • Feedback control or operation with following error
| | • Integrated digital drive control including inverter |
| **Multi-channel capability** | • Up to three channels for asynchronous multi-slide machining |
| **Accessories** | • HR electronic handwheels
| | • TS workpiece touch probe and TT tool touch probe |

1) Software option
For further functions and differences in function, see the product documentation.
MANUALplus 620 contouring control
For CNC and cycle lathes

The MANUALplus 620 is a compact and versatile contouring control that is particularly well suited for cycle-controlled lathes. The MANUALplus 620 optimally combines the ease of use of conventional lathes with the advantages of CNC-controlled machines.

Regardless of whether you are manufacturing single parts or batches or whether your workpieces are simple or complex, the control adapts to the needs of your company. The MANUALplus 620 is characterized by its simple operation and programming. It is quickly learned and requires minimum training time.

The MANUALplus 620 supports lathes with main and counter spindle, one slide (X and Z axis), C axis or positionable spindle, and driven tools, as well as machines with Y and B axes.

<table>
<thead>
<tr>
<th>MANUALplus 620</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axes</td>
</tr>
</tbody>
</table>
| **Interpolation** | • Straight line: in 2 principal axes, optional in 3 principal axes
 • Circle: in 2 axes, optional additional linear interpolation in the third axis
 • C1/C2 axis: interpolation of X and Z linear axes with the C1/C2 axis† |
| **Program entry** | Teach-In mode, smart.Turn ††, DIN PLUS |
| **Programming aids** | TURNguide presents user information directly on the control |
| **DXF import††** | Loading DXF contours |
| **Program memory** | 1.8 GB CFR memory card |
| **Position entry** | Nominal positions in Cartesian or polar coordinates, dimensions absolute or incremental, in mm or inches, actual position capture |
| **Input resolution and display step** | X axis: 0.5 µm, diameter: 1 µm
 U, V, W, Y, Z axes: 1 µm
 B, C1/C2 axes: 0.001° |
| **Block processing time** | 3 ms |
| **Setup functions** | • Setting the workpiece datum
 • Defining the tool change point
 • Defining the protection zone |
| **Interactive Contour Programming ICP** | Contour definition with graphic support |
| **Canned cycles** | Stock removal, recessing, recess turning, engraving, thread cutting, helical slot milling, boring, drilling, tapping, deburring, trochoidal milling, hobbing, eccentric and non-circular turning |
| **Touch-probe cycles††** | For tool and workpiece measurement as well as presetting |
| **Graphics** | For programming and program verification |
| **Parallel operation** | Program run and programming with graphics |
| **Data interface** | Ethernet 1000BASE-T; USB 3.0; USB 2.0; RS-232-C/V.24 (max. 115 200 bauds) |
| **Remote control and diagnosis** | TeleService |
| **Screen** | 15.6-inch screen for multitouch operation (with virtual operating panel) |
| **Axis feedback control** | • Feedforward control or operation with following error
 • Integrated digital drive control including inverter |
| **Accessories** | • HR electronic handwheels
 • TS workpiece touch probe and TT tool touch probe |

† Software option
For further functions and differences in function, see the product documentation
Contouring controls
Digital control design

Control packages from HEIDENHAIN are perfectly matched systems consisting of the following components:
• Software
• Control hardware and real-time hardware
• Drive electronics
• Motors
• Encoders

In this uniformly digital control solution, all components are connected over purely digital interfaces: the control components over HSCI (HEIDENHAIN Serial Controller Interface), which is the HEIDENHAIN real-time protocol for Fast Ethernet, and the encoders over EnDat 2.2, the bidirectional interface from HEIDENHAIN. This achieves a high degree of availability for the entire system. It can be diagnosed and is immune to noise—from the main computer to the encoder. The outstanding characteristics of the uniform digital solution from HEIDENHAIN guarantee very high accuracy and surface definition together with high traversing speeds.

Digital drive control
High surface definition, high contouring accuracy of the finished workpiece, and short machining times—these requirements can be met only with digital control techniques. Here HEIDENHAIN offers NC products with integrated digital drive control:

The following HEIDENHAIN controls are available with HSCI and digital drive control:
• TNC 640
• TNC 620
• CNC PILOT 640
• MANUALplus 620

Motors for axis and spindle drives
HEIDENHAIN offers various motors for axis and spindle drives as accessories to its controls with integrated inverters:
• Feed motors with a stall torque of 1.5 Nm to 120 Nm and a power rating ranging from 0.5 kW to 14.4 kW.
• Spindle motors with a power rating ranging from 5.5 kW to 40 kW.

Inverter systems
Either compact or modular inverters are available, depending on the type of machine. The compact inverters include power electronics for up to five axes plus spindle with a rated output of the total system up to 22 kW. For the modular inverters, supply units from 22 kW to 125 kW as well as various power modules for axes and spindles are available. Modular inverters are suited for machines with up to 24 axes, of which up to four can be configured as spindles.

Gen 3 drives
With the new Gen 3 components, HEIDENHAIN is offering a complete system that is based on highly innovative and future-oriented technologies. You profit from state-of-the-art interface technology, improved performance data, and increased controller performance. This makes the Gen 3 drive technology an important key component for machines that must fulfill stringent requirements regarding availability, surface quality, and machining time.
Accessories

Electronic handwheels and programming stations

With the electronic handwheel from HEIDENHAIN, you can use the feed drive to make very precise movements in the axis slides in proportion to the rotation of the handwheel. As an option, the handwheels are available with mechanical detent.

HR 510, HR 520, and HR 550 FS portable handwheels

The axis keys and certain functional keys are integrated in the housing. This way you can switch axes or set up the machine at any time—and regardless of where you happen to be standing. The **HR 520** also features a display for the position value, the feed rate, the spindle speed, the operating mode, and other functions, as well as override potentiometers for the feed rate and spindle speed. You can enjoy unlimited freedom of movement with the **HR 550 FS** with radio transmission. Its features correspond to those of the **HR 520**.

Creating programs

The programming, testing, and optimizing of HEIDENHAIN Klartext or G-code programs with the programming station substantially reduces machine idle times. You do not need to change your way of thinking. At the programming station you program on the same keyboard as at the machine.

Training with the programming station

Because the programming stations are based on the respective control software, they are ideally suited for apprentice and advanced training.

TNC training in schools

Since they can be programmed with G codes as well as in Klartext conversational format, the programming stations can also be used in schools for TNC programming training.

Collect, evaluate, and visualize machine data. With the smart analysis tool **StateMonitor**, the status of your machines is always at your fingertips.

StateMonitor collects and visualizes the following information from the networked machines:

- Operating modes
- Override positions (spindle, rapid traverse, feed rate)
- Program status and program name, as well as subprograms if applicable
- Program run time
- SIK number and software number
- Machine messages

Active support for production planning with an extensive range of functions for job data collection:

- Create and assign jobs
- Start and terminate jobs
- Plan setup times and interruptions
- Store additional job data (such as quantities produced)

StateMonitor even lets you connect machines with different controls and supports the following protocol types: HEIDENHAIN DNC, OPC UA, MTConnect, and Modbus TCP.

With the TNC 640 and TNC 620/TNC 320 programming stations, you have the capability to program in Klartext conversational format just as you do at the machine, but away from the noise and distractions of the shop floor.

The axis keys and certain functional keys are integrated in the housing. This way you can switch axes or set up the machine at any time—and regardless of where you happen to be standing. The **HR 520** also features a display for the position value, the feed rate, the spindle speed, the operating mode, and other functions, as well as override potentiometers for the feed rate and spindle speed. You can enjoy unlimited freedom of movement with the **HR 550 FS** with radio transmission. Its features correspond to those of the **HR 520**.

Creating programs

The programming, testing, and optimizing of HEIDENHAIN Klartext or G-code programs with the programming station substantially reduces machine idle times. You do not need to change your way of thinking. At the programming station you program on the same keyboard as at the machine.

Training with the programming station

Because the programming stations are based on the respective control software, they are ideally suited for apprentice and advanced training.

TNC training in schools

Since they can be programmed with G codes as well as in Klartext conversational format, the programming stations can also be used in schools for TNC programming training.

StateMonitor

Active support for production planning with an extensive range of functions for job data collection:

- Create and assign jobs
- Start and terminate jobs
- Plan setup times and interruptions
- Store additional job data (such as quantities produced)

StateMonitor even lets you connect machines with different controls and supports the following protocol types: HEIDENHAIN DNC, OPC UA, MTConnect, and Modbus TCP.

Collect, evaluate, and visualize machine data. With the smart analysis tool **StateMonitor**, the status of your machines is always at your fingertips.

StateMonitor collects and visualizes the following information from the networked machines:

- Operating modes
- Override positions (spindle, rapid traverse, feed rate)
- Program status and program name, as well as subprograms if applicable
- Program run time
- SIK number and software number
- Machine messages

Active support for production planning with an extensive range of functions for job data collection:

- Create and assign jobs
- Start and terminate jobs
- Plan setup times and interruptions
- Store additional job data (such as quantities produced)

StateMonitor even lets you connect machines with different controls and supports the following protocol types: HEIDENHAIN DNC, OPC UA, MTConnect, and Modbus TCP.

Collect, evaluate, and visualize machine data. With the smart analysis tool **StateMonitor**, the status of your machines is always at your fingertips.

StateMonitor collects and visualizes the following information from the networked machines:

- Operating modes
- Override positions (spindle, rapid traverse, feed rate)
- Program status and program name, as well as subprograms if applicable
- Program run time
- SIK number and software number
- Machine messages
The TS workpiece touch probes from HEIDENHAIN help you perform setup, measuring, and inspection functions directly on the machine tool.

The stylus of a TS touch trigger probe is deflected upon contact with a workpiece surface. At that moment the TS generates a trigger signal that, depending on the model, is transmitted either by cable or over an infrared or radio beam to the control.

The control simultaneously saves the actual position values as measured by the machine axis encoders, and uses this information for further processing. The trigger signal is generated through a wear-free optical sensor that ensures high reliability.

HEIDENHAIN offers probe styli with various ball-tip diameters and stylus lengths. On the TS 260, asymmetric probing elements can also be attached through an adapter and exactly aligned with the aid of the screw connection.

Benefits of HEIDENHAIN touch probes
- High probing repeatability
- High probing speed
- No wear thanks to contact-free optical switch and high-accuracy pressure sensor
- High repeatability over a long period
- Noise-free signal transmission by cable, radio, or infrared beam
- Optical status indicator
- Integrated flusher/blower on infrared touch probes
- Effective energy-saving mode
- With TS 460: collision protection adapter (optional) prevents damage and reduces heating of the TS through the spindle
- With TS 260: direct connection with any subsequent electronics; no interface required

![Touch probe with radio and infrared transmission](image)

Touch probe with radio and infrared transmission for machines with automatic tool change:
- TS 460: standard touch probe
 - Compact dimensions, energy-saving mode, optional collision protection and thermal decoupling
- TS 642: touch probe for retrofitting
 - Activation by switch in the taper shank
- TS 740: highly accurate touch probe
 - High probing accuracy and repeatability, low probing force

Probe system with cable-bound signal transmission for machines with manual tool change, e.g. grinding, turning and milling machines:
- TS 150: cable-bound touch probe
 - Radial or axial cable connection
- TS 260: cable-bound touch probe
 - Radial or axial cable connection
 - TS 248: cable-bound touch probe
 - Radial cable connection, with reduced deflection forces

Table: HEIDENHAIN Touch Probes

<table>
<thead>
<tr>
<th>Machine type</th>
<th>Machine type</th>
<th>Signal transmission</th>
<th>Transceiver unit</th>
<th>Power supply</th>
<th>Switching on/off</th>
<th>Interface to control</th>
<th>Probe repeatability</th>
<th>Probe velocity</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 460</td>
<td>TS 642</td>
<td>TS 740</td>
<td>TS 260</td>
<td>TS 248</td>
<td>TS 150</td>
<td>TS 460</td>
<td>TS 642</td>
<td>TS 740</td>
<td>TS 150</td>
</tr>
<tr>
<td>TCNC machine tools for milling, drilling, and boring as well as lathes</td>
<td>CNC grinding machine or lathes</td>
<td>Radio and infrared</td>
<td>Infrared</td>
<td>Via cable</td>
<td>Radio or infrared transmission</td>
<td>Switch in taper shank</td>
<td>By infrared signal</td>
<td>HTL via SE transceiver unit</td>
<td>HTL</td>
</tr>
</tbody>
</table>
TT tool touch probes

Tool measurement on the machine shortens non-productive times, increases machining accuracy, and reduces the scrapping and reworking of machined parts. The tactile TT touch probes allow you to measure your tools efficiently and reliably.

Due to their rugged design and high degree of protection, these tool touch probes can be installed directly within the machine tool’s work envelope. Tool measurement is possible at any time: before machining, between two machining steps, or after machining is done.

Touch probes
The TT 160 and TT 460 are 3-D touch trigger probes for tool measurement and inspection. The disk-shaped probe contact of the TT is deflected during the tactile probing of a tool. In that instant, the TT generates a trigger signal that is transmitted to the control, where it is then processed further. The trigger signal is generated through a wear-free optical sensor that ensures high reliability.

TT 160
Signal transmission to the NC over connecting cable
- Signal transmission over radio and infrared beam to transceiver unit
- The SE 660 is a common transceiver unit for tool and workpiece touch probes with radio and infrared transmission

TT 460
- Signal transmission to the NC over connecting cable
- Signal transmission over radio and infrared beam to transceiver unit
- The SE 660 is a common transceiver unit for tool and workpiece touch probes with radio and infrared transmission

TT tool touch probes

<table>
<thead>
<tr>
<th>TT 160</th>
<th>TT 460</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probing method</td>
<td>Physical probing in three dimensions: ±X, ±Y, ±Z</td>
</tr>
<tr>
<td>Probe repeatability</td>
<td>2σ ≤ 1 μm (probing speed 1 m/min)</td>
</tr>
<tr>
<td>Permissible deflection of probe contact</td>
<td>≈ 5 mm in all directions</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>DC 10 V to 30 V via NC</td>
</tr>
<tr>
<td>Interface to control (Signal level)</td>
<td>HTL</td>
</tr>
<tr>
<td>Signal transmission</td>
<td>Via cable</td>
</tr>
<tr>
<td>Probe contact</td>
<td>Ø 40 mm or Ø 25 mm</td>
</tr>
<tr>
<td>Protection</td>
<td>EN 60529</td>
</tr>
<tr>
<td>Protection</td>
<td>IP67</td>
</tr>
</tbody>
</table>

Probe repeatability

| SE transceiver units |

The following transceiver units are available for wireless signal transmission:
- SE 540: for integration in spindle head; only infrared transmission
- SE 642: shared SE for TS and TT; only infrared transmission
- SE 660: shared SE for TS and TT; radio and infrared transmission
- SE 661: shared SE for TS and TT; radio and infrared transmission, EnDat interface for touch probes

With wireless signal transmission, these touch probes are also suited for use on machines with automatic tool changers.

The SE 661 transceiver unit and the TS 460 and TT 460 touch probes are available with the EnDat interface. The EnDat interface from HEIDENHAIN is a digital, bidirectional interface that transmits the trigger status as well as diagnostic information and additional data from the touch probe. Thanks to the interface’s serial transmission method, multiple items of data can be transmitted simultaneously.

SE transceiver units

<table>
<thead>
<tr>
<th>SE 660</th>
<th>SE 661</th>
<th>SE 540</th>
<th>SE 642</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS 460</td>
<td>Radio/Infrared</td>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>TS 642</td>
<td>Infrared</td>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>TS 740</td>
<td>-</td>
<td>Infrared</td>
<td></td>
</tr>
<tr>
<td>TT 460</td>
<td>Radio/Infrared</td>
<td>Infrared</td>
<td></td>
</tr>
</tbody>
</table>

Signal transmission types and combinations of TS, TT, and SE
Evaluation electronics units
Evaluation electronics for metrology applications from HEIDENHAIN serve to visualize and process the values measured with linear encoders, length gauges, rotary encoders, or angle encoders. They combine measured value acquisition with intelligent, application-specific further processing.
They are used in many metrological applications, ranging from simple measuring stations to complex inspection systems with multiple measuring points.
The evaluation electronics include units with integrated display—which can be used independently—and units that require a PC for operation. They feature interfaces for various encoder signals.

Digital readouts
HEIDENHAIN digital readouts for manually operated machine tools have universal application: in addition to standard tasks on milling, drilling, and boring machines and lathes, they also offer ideal solutions for many applications on machine tools and special machines—in fact all machines where axis slides are moved manually. This includes radial drilling machines and rapid radial drilling machines.

Digital readouts for manual machine tools increase your productivity. They save time and increase the dimensional accuracy of the finished workpiece while offering very user-friendly operation.

Practice-oriented functions and cycles are available for various applications. The distance-to-go display feature with graphic positioning aid allows you to approach the next nominal position quickly and reliably simply by traversing to a display value of zero. And POSITIP speeds up small-batch production—repetitive machining sequences can be saved as a program.

Precise manufacturing made easy: Together with linear encoders from HEIDENHAIN, the digital readouts measure the axis movements directly. The backlash caused by mechanical transfer elements such as lead screws, racks, and gears therefore has no influence.

Interface electronics
HEIDENHAIN interface electronics adapt the encoder signals to the interface of the subsequent electronics. They are used when the subsequent electronics cannot directly process the output signals from HEIDENHAIN encoders, or when additional interpolation of the signals is necessary.

User-friendly environment
Digital readouts and evaluation electronics with integrated display are specially designed for user friendliness. Typical characteristics:
• Optimally readable, graphic flat panel display
• Intuitive operation using touchscreen or keyboard (depending on the product)
• All-in-one device with compact outside dimensions
• Sturdy aluminum housing
• Reference mark evaluation for distance-coded and single reference marks
• Problem-free installation, maintenance-free operation
• Fast payback with economical use

Evaluation electronics and digital readouts from HEIDENHAIN feature a data interface for further processing in the higher-level electronics or simply to print out the measured values.

<table>
<thead>
<tr>
<th>Evaluation electronics for metrology applications</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>For measuring and testing tasks</td>
<td>ND 287</td>
</tr>
<tr>
<td>GAGE-CHEK 2000</td>
<td>ND 2100</td>
</tr>
<tr>
<td>GAGE-CHEK</td>
<td>EIB 700</td>
</tr>
<tr>
<td>EIB 700</td>
<td>IK 220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital readouts for manually operated machine tools</th>
<th>Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>For milling machines, lathes, and positioning devices</td>
<td>POSITIP 8000</td>
</tr>
<tr>
<td>ND 7000</td>
<td>ND 5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface electronics, inspection and test equipment</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>67</td>
</tr>
</tbody>
</table>
Evaluation electronics for metrology applications
Measuring and testing tasks

Evaluation electronics for measuring and testing tasks are ideal for:
- Measurement equipment
- Adjustment and inspection equipment
- SPC inspection stations
- Multipoint inspection apparatuses
- Mobile data acquisition
- Positioning equipment

The ND evaluation units are independently operating devices with integrated screen and sturdy housing. They feature special functions for measuring and statistical evaluation of measured values such as sorting and tolerance check mode, minimum/maximum value storage, and measurement series storage. These data make it possible to calculate mean values and standard deviations, and graphically display them in histograms or control charts. With the ND 2100 G, even complex properties like flatness and volume can be ascertained: its inputs can be assigned and combined as desired with mathematical, trigonometric or statistical formulas.

The EIB 700 is ideal for applications requiring high resolution, fast measured-value acquisition, mobile data acquisition, or data storage. The data is transferred over the standard Ethernet interface for evaluation and display in a higher-level computer system.

The IK 220 is an expansion board for PCs for recording the measured values of two incremental or absolute HEIDENHAIN encoders.

Data Interfaces
<table>
<thead>
<tr>
<th>ND 287</th>
<th>GAGE-CHEK 2000</th>
<th>ND 2100 G GAGE-CHEK</th>
<th>EIB 700</th>
<th>IK 220</th>
</tr>
</thead>
</table>
| **Application** | • Measurement equipment
• Testing devices
• SPC inspection stations | • Positioning equipment
• Measuring fixtures | • Multipoint inspection apparatuses
• SPC inspection stations | • Inspection stations
• Multipoint inspection apparatuses
• Mobile data acquisition | • Measuring and inspection stations |
| **Axes** | 1 (optional 2) | 3 | 4 or 8 | 4 | 2 |
| **Encoder inputs** | ~1 Vpp, ~11 µApp
or EnDat 2.2 | ~1 Vpp, ~11 µApp
EnDat 2.2 or TTL | ~1 Vpp, TTL, EnDat 2.2, LVDT, or HBT (other interfaces upon request) | ~1 Vpp, EnDat 2.1, EnDat 2.2,
or ~1 µApp | ~1 Vpp, ~11 µApp EnDat 2.1,
or SSI |
| **Display** | Screen | 7-inch screen for multitouch operation | 5.7-inch screen | By PC screen |
| **Function** | • Sorting and tolerance checking
• Measurement series with minimum and maximum value recording
• Functions for statistical process control (SPC)
• Graphic display of measurement results
• Storage of measured values
Optional: Sum/difference display or thermal compensation | • Measurement series with minimum and maximum value recording
• Touch probe connection for a HEIDENHAIN or Renishaw touch probe
• Manual, continuous, or touch-probe-triggered data transfer
• User administration
• Dial gage for a graph of the measured value
• Diameter/radius display
• Relative measurement
• Probing functions | • Sorting and tolerance checking
• Measurement series with minimum and maximum value recording
• Functions for statistical process control (SPC)
• Graphic display of measurement results
• Storage of measured values
• Programming of up to 100 parts
• Entry of any formulas, combinations and variables
• Output of measurement results | • Precise position measurement; updating rate of up to 50 kHz
• Programmable measured-value inputs
• Internal and external measured-value triggers
• Measured-value memory for typically 250,000 measured values per channel
• Standard Ethernet interface connection to higher-level computer systems | • Programmable measured-value inputs
• Internal and external measured-value triggers
• Measured-value memory for 8192 measured values per channel |
| **Data interfaces** | USB, RS-232-C;
optional: Ethernet | Ethernet, USB, RS-232-C | USB, RS-232-C | Ethernet | PCI (PC interface) |

1 Depending on version
2 Possible with RS-232 adapter connection over USB port
Digital readouts for manually operated machine tools

Applications for digital readouts are on manually operated machine tools, e.g.:
- Milling machines
- Drilling and boring machines
- Lathes
- Radial drilling machines
- Grinding machines

HEIDENHAIN offers the appropriate digital readout for each of these machine types. The splash-proof front panel and the sturdy cast-metal housing make digital readouts from HEIDENHAIN impervious to the harshest of everyday shop conditions.

Interface electronics, inspection and testing devices

Interface electronics

Interface electronics from HEIDENHAIN adapt the encoder signals to the interface of the subsequent electronics, for example:
- Incremental signals
 - 1 Vpp > TTL
 - 11 µA > TTL

Inspection and testing devices

HEIDENHAIN encoders provide all of the information needed for commissioning, monitoring, and diagnostics. HEIDENHAIN offers the appropriate PWM inspection devices and PWT testing devices for encoder adjustment and analysis. The PWM inspection devices can be used universally. They have low measuring tolerances and can be calibrated.

Testing devices have larger measuring tolerances, fewer available functions, and cannot be calibrated.

HEIDENHAIN encoders can usually be connected directly or via interface electronics to a number of different subsequent encoders.

HEIDENHAIN therefore offers encoders and interface electronics with various interfaces. The testing and inspection devices from HEIDENHAIN also support various interfaces, which makes their application more flexible (see overview for the PWM 21 and PWT 101).

Interface electronics

- The interface electronics perform signal conversion and interpolate the sinuisoidal encoder signals. This permits finer measuring steps, resulting in higher control quality and superior positioning behavior.

- Some interface electronics have an integrated counting function. Starting from the last set reference point, an absolute position value is generated and output to the subsequent electronics when the reference mark is traversed.

Inspection and testing devices

- HEIDENHAIN interface electronics are available in various mechanical designs:
 - Box design
 - Plug design
 - Version for integration
 - Top-hat rail design

Encoder input

<table>
<thead>
<tr>
<th>Encoder input</th>
<th>PWM 21</th>
<th>PWT 101</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnDat 2.1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>EnDat 2.2</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>DRIVE-CLiQ</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Fanuc Serial Interface</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Mitsubishi high speed interface</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Yaskawa Serial Interface</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Panasonic Serial Interface</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>SSI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1 Vpp/TTL/11 µAmp</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1 Vpp with Z1 track</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TTL (via signal adapter)</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Data interfaces

- **ETH/PWM 21**: Ethernet, USB
- **PWM 21**: USB
- **PWT 101**: USB

Interface electronics

- **POSITIP 8000**
- **ND 7000**
- **ND 5000**

Axes

- 12.1-inch screen for multitouch operation, switching inputs and outputs
- 7-inch screen for multitouch operation, switching inputs and outputs
- 7-inch screen with operating keys

- **Axes**: 6, two of them as software option
- **Axes**: 3, 3

Encoder inputs

- **Encoders**: 1 Vpp, 11 µA, EnDat 2.2
- **Encoders**: TTL

Display step

- **Step**: 10 µm, 5 µm, 1 µm, or finer
- **Step**: 5 µm (with LS 328C/628C), 5 µm (with LS 378C)

Presets

- **Presets**: 100
- **Presets**: 10

Tool data

- **Tool data**: For 100 tools
- **Tool data**: For 16 tools

Programming

- **Programming**: Yes
- **Programming**: No

Functions

- **Manual and MDI operation, graphical positioning aid, variable font size for display of position values**
- **User administration and data management**

- **Touch probe connection, graphical positioning aid, variable font size for display of position values**
- **Touch probe connection**

- **For milling or boring operation**
 - **Hole patterns (circular and linear patterns)**
 - **Roughing of rectangular pockets**
 - **Probing functions for reference-point acquisition**
 - **Switching functions**

- **ACTIVE version: controlling the spindle speed**
- **I/O version: controlling the spindle speed**

- **For turning**
 - **Radius/diameter display**
 - **Separate or sum display for Z1 and Z2**
 - **Freezing tool position for back-off/taper calculator**
 - **Switching functions**

- **ACTIVE version: constant cutting speed**
- **I/O version: constant cutting speed**

Interface electronics

- **POSITIP 8000**
- **ND 7000**
- **ND 5000**

Applications

- Milking machines
- Drilling and boring machines
- Lathes
- Radial drilling machines
- Grinding machines

Data interfaces

- **Ethernet, USB**
- **USB**
Brochures, data sheets, and CD-ROMs
The products shown here are described in more detail in separate documentation, including complete specifications, signal descriptions, and dimension drawings in English and German (other languages available upon request).

HEIDENHAIN on the Internet
At www.heidenhain.de you will find not only these brochures in various languages, but also a great deal of further up-to-date information on the company and its products.

Our website also includes:
• Technical articles
• Press releases
• Addresses
• TNC training programs

Further information

Length measurement

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Linear Encoders For Numerically Controlled Machine Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Absolute linear encoders LC, Incremental linear encoders LB, LF, LS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Length Gauges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>HEIDENHAIN-ACANTO, HEIDENHAIN-SPECTO, HEIDENHAIN-METRO, HEIDENHAIN-CERTO</td>
</tr>
</tbody>
</table>

Angle measurement

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Rotary Encoders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Absolute rotary encoders ECN, EDN, ROC, ROO, Incremental rotary encoders ERN, ROD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Angle Encoders with Integral Bearing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Absolute angle encoders RCN, ECN, Incremental angle encoders RON, RPN, ROD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Modular Angle Encoders With Optical Scanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Incremental angle encoders ERR, ERO, ERA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Angle Encoder Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Angle encoder modules MRP 2000/5000/8000, Angle encoder modules with integrated torque motor SRP 5000, AccurET</td>
</tr>
</tbody>
</table>

Machine tool control

<table>
<thead>
<tr>
<th>Brochure</th>
<th>TNC 128 Straight-Cut Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Information for the user</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>TNC 530 Contouring Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Information for the user</td>
</tr>
</tbody>
</table>

Measured value acquisition and display

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Evaluation Electronics For Metrology Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>ND, QUADRA-CHEK, EIB, IK</td>
</tr>
</tbody>
</table>

Setup and measurement

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Touch Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Tool touch probes TT, Workpiece touch probes TS</td>
</tr>
</tbody>
</table>

Connecting encoders and touch probes

<table>
<thead>
<tr>
<th>Brochure</th>
<th>Cables and Connectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Technical properties, cable overviews, and cable lists</td>
</tr>
</tbody>
</table>

OEM brochures

<table>
<thead>
<tr>
<th>Brochure</th>
<th>TNC 128 Straight-Cut Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Information for the machine tool builder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brochure</th>
<th>TNC 530 Contouring Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td>Information for the machine tool builder</td>
</tr>
</tbody>
</table>

Contents:
- Incremental encoders KGM, VM
- Absolute encoders LK, LF
- Linear encoders LIC, LID, LS, ND, POSITIP
- Angle encoders ECN, EOB, OCR, ROM, RON, RN, RPN, ROD, ROC
- Rotary encoders ERN, ROD
- Touch probes TS, TT
- Interface Electronics
- Cables and Connectors
- Brochures and data sheets
- Technical properties and specifications
- Press releases and addresses
- Technical articles
- TNC training programs

Measured value acquisition and display

- Evaluation Electronics For Metrology Applications
- ND, QUADRA-CHEK, EIB, IK
- Technical properties, cable overviews, and cable lists
- Information for the machine tool builder