Product Information

ECI 4090 S
Absolute Rotary Encoder with 90 mm Hollow Shaft and DRIVE-CLiQ Interface for Safety-Related Applications

Firmware 15
ECI 4090 S

Rotary encoder for absolute position values with safe singleturn information
- Robust inductive scanning principle
- Hollow through shaft (Ø 90 mm)
- Consists of a scanning unit and scale drum

Required mating dimensions

- Bearing of mating shaft
- M1 = Measuring point for operating temperature on housing
- M2 = Measuring point for vibration on housing
- 1 = Datum position ±5°
- 2 = Maximum permissible axial deviation between the shaft surface and flange surface
- 3 = Use screws with material bonding anti-rotation lock: ISO 4762 – M4 x 25 – 8.8 – MKL as per DIN 267-27 (not included in delivery, ID 202264-88); tightening torque: 2.2 Nm ±0.13 Nm
- 4 = Space required when encoder cover is closed
- 5 = Space required for opening the encoder cover
- 6 = Total runout of mating shaft
- 7 = Coaxiality of stator mating surface
- 8 = Bearing surface of rotor
- 9 = Bearing surface of stator
- 10 = Chamfer at start of thread is mandatory for material bonding anti-rotation lock
- 11 = Direction of shaft rotation for ascending position values
- 12 = This area of the mating surface does not need to be fully covered by the scanning unit

Tolerancing ISO 8015
ISO 2768 - m H
< 6 mm: ±0.2 mm
Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>ECI 4090S – singletum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional safety</td>
<td>As single-encoder system for monitoring and closed-loop functions</td>
</tr>
<tr>
<td>For applications up to</td>
<td>• SIL 2 as per EN 61508 (further basis for testing: EN 61800-5-2)</td>
</tr>
<tr>
<td></td>
<td>• Category 3, PL d as per EN ISO 13849-1:2015</td>
</tr>
<tr>
<td></td>
<td>Safe in the singleturn range</td>
</tr>
<tr>
<td>PFH<sup>1)</sup></td>
<td>SIL 2: (2 \times 10^{-9}) (probability of dangerous failure per hour)</td>
</tr>
<tr>
<td>Safe position<sup>2)</sup></td>
<td>Encoder: ±0.44° (safety-related measuring step: SM = 0.176°)</td>
</tr>
<tr>
<td></td>
<td>Fault exclusion for the loosening of the AE scanning unit and TTR scale drum; designed for the following accelerations on the AE: (\leq 400 \text{ m/s}^2) and TTR: (\leq 600 \text{ m/s}^2)</td>
</tr>
<tr>
<td>Interface</td>
<td>DRIVE-CLiQ</td>
</tr>
<tr>
<td>Ordering designation</td>
<td>DQ01</td>
</tr>
<tr>
<td>Firmware</td>
<td>01:32:27:15</td>
</tr>
<tr>
<td>SINAMICS, SIMOTION<sup>3)</sup></td>
<td>≥ V4.6 HF3</td>
</tr>
<tr>
<td>SINUMERIK with safety<sup>3)</sup></td>
<td>≥ V4.7 SP1 HF1</td>
</tr>
<tr>
<td>SINUMERIK without safety<sup>3)</sup></td>
<td>≥ V4.5 SP2 HF4</td>
</tr>
<tr>
<td>Position values per rev.</td>
<td>1 048 576 (20 bits)</td>
</tr>
<tr>
<td>Calculation time</td>
<td>≤ 11 µs</td>
</tr>
<tr>
<td>TIME_MAX_ACTVAL<sup>4)</sup></td>
<td>≤25°</td>
</tr>
<tr>
<td>System accuracy</td>
<td>±25°</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>15-pin PCB connector (with connection for external temperature sensor<sup>5)</sup>)</td>
</tr>
<tr>
<td>Cable length<sup>6)</sup></td>
<td>≤ 40 m (see description in the Interfaces of HEIDENHAIN Encoders brochure)</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>DC 24 V (10 V to 28.8 V); up to 36 V possible without limiting functional safety</td>
</tr>
<tr>
<td>Power consumption<sup>7)</sup> (maximum)</td>
<td>At 10 V: ≤ 1100 mW, at 28.8 V: ≤ 1250 mW</td>
</tr>
<tr>
<td>Current consumption (typical)</td>
<td>At 24 V: 40 mA (without load)</td>
</tr>
<tr>
<td>Shaft</td>
<td>Hollow through shaft ((\varnothing) 90 mm)</td>
</tr>
<tr>
<td>Speed</td>
<td>≤ 6000 rpm</td>
</tr>
<tr>
<td>Moment of inertia of rotor</td>
<td>4.26 · 10<sup>-3</sup> kgm<sup>2</sup> (without screws)</td>
</tr>
<tr>
<td>Angular acceleration of rotor</td>
<td>≤ 2 · 10<sup>3</sup> rad/s<sup>2</sup></td>
</tr>
<tr>
<td>Axial motion of measured shaft</td>
<td>≤ ±1.5 mm</td>
</tr>
</tbody>
</table>

¹⁾ For use at an altitude of ≤ 1000 m above sea level

²⁾ Further tolerances may arise in subsequent electronics after position value comparison (contact mfr. of subsequent electronics)

³⁾ Information from Siemens as per the document “Certified encoders with DRIVE-CLiQ Dependencies on SIMOTION / SINUMERIK Hardware and Software versions” (version: 04/2019)

⁴⁾ The calculation time TIME_MAX_ACTVAL specifies the time after which a data transfer from the encoder to the control can start within the current-regulator clock time

⁵⁾ See Temperature measurement in motors in the Encoders for Servo Drives brochure

⁶⁾ With an output cable length (inside the motor) ≤ 1 m

⁷⁾ See General electrical information in the Interfaces of HEIDENHAIN Encoders brochure
<table>
<thead>
<tr>
<th>Specifications</th>
<th>ECI 4090 S – singletum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration</td>
<td>55 Hz to 2000 Hz(^{[3]})</td>
</tr>
<tr>
<td>Shock</td>
<td>6 ms</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>~40 °C to 100 °C (at the measuring point and on the entire scale drum)</td>
</tr>
<tr>
<td>Trigger threshold</td>
<td>for temperature exceedance error message</td>
</tr>
<tr>
<td></td>
<td>120 °C (measuring accuracy of the internal temperature sensor: ±1 K)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>≤ 93 % (40 °C/21 d as per EN 60068-2-78), without condensation</td>
</tr>
<tr>
<td>Protection class</td>
<td>EN 60529</td>
</tr>
<tr>
<td></td>
<td>Complete encoder, mounted: IP20(^{[4]}); scanning unit: IP40 (read about insulation under General electrical information in the Interfaces of HEIDENHAIN Encoders brochure)</td>
</tr>
<tr>
<td>Mass</td>
<td>AE scanning unit: ≈ 0.27 kg; TTR scale drum: ≈ 0.17 kg</td>
</tr>
<tr>
<td>ID number</td>
<td>AE ECI4090S scanning unit: ID 1130171-04</td>
</tr>
<tr>
<td></td>
<td>TTR EXI4000 scale drum: ID 1130175-02</td>
</tr>
</tbody>
</table>

\(^{[3]}\) AE: 10 Hz to 55 Hz, 6.5 mm constant peak to peak; TTR: 10 Hz to 55 Hz, 10 mm constant peak to peak

\(^{[4]}\) The encoder must be protected from abrasive and harmful media in the application. Use an appropriate enclosure as needed
Mounting

The scale drum of the rotary encoder is slid onto the measured shaft’s centering collar and fastened. The stator is mounted via an external centering diameter. Use screws with material bonding anti-rotation lock (see Mounting accessories).

For the fault exclusion design for functional safety, the following material properties and conditions for the mating surfaces are assumed. Four possible material combinations are permitted for the customer-side stator and rotor.

<table>
<thead>
<tr>
<th>Material</th>
<th>Aluminum</th>
<th>Hardenable wrought aluminum alloy</th>
<th>Steel</th>
<th>Unalloyed heat-treated steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile strength R_m</td>
<td>≥ 220 N/mm²</td>
<td></td>
<td>≥ 600 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Yield strength $R_{p0.2}$ or Yield point R_e</td>
<td>–</td>
<td></td>
<td>≥ 400 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Shear strength τ_a</td>
<td>≥ 130 N/mm²</td>
<td></td>
<td>≥ 390 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Interface pressure P_G</td>
<td>≥ 250 N/mm²</td>
<td></td>
<td>≥ 660 N/mm²</td>
<td></td>
</tr>
<tr>
<td>Young’s modulus E (at 20 °C)</td>
<td>70 kN/mm² to 75 kN/mm²</td>
<td></td>
<td>200 kN/mm² to 215 kN/mm²</td>
<td></td>
</tr>
<tr>
<td>Coefficient of thermal expansion α_{therm} (at 20 °C)</td>
<td>≤ 25 · 10⁻⁶ K⁻¹</td>
<td></td>
<td>10 · 10⁻⁶ K⁻¹ to 17 · 10⁻⁶ K⁻¹</td>
<td></td>
</tr>
<tr>
<td>Surface roughness R_z</td>
<td>≤ 16 µm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction values</td>
<td>Mounting surfaces must be clean and free of grease. Use screws from HEIDENHAIN in their delivery condition.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tightening procedure</td>
<td>Use a signal-emitting torque wrench as per DIN EN ISO 6789, with an accuracy of ±6 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting temperature</td>
<td>15 °C to 35 °C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protection against contact (EN 60529)
After encoder installation, all rotating parts must be protected from accidental touching during operation.
Mounting accessories

Screws
Screws are not included in delivery and can be ordered separately.

<table>
<thead>
<tr>
<th>ECI 4090S</th>
<th>Screws(^1)</th>
<th>Lot size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting screws for stator and rotor</td>
<td>ISO 4762–M4x25–8.8–MKL</td>
<td>ID 202264-88</td>
</tr>
<tr>
<td></td>
<td>60 or 300 pieces</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) With coating for material bonding anti-rotation lock

Please note the information on screws from HEIDENHAIN in the *Encoders for Servo Drives* brochure, under *Screws with material bonding anti-rotation lock* in the *General mechanical information* chapter.

Mounting aid
To avoid damage to the cable, use the mounting aid to connect and disconnect the cable assembly. The pulling force must be applied only to the connector and not to the wires.

ID 1075573-01

For further mounting information and mounting aids, please refer to the *Encoders for Servo Drives* catalog.
Electrical requirements

Switch-on and switch-off conditions

Operation Switch-off Off Switch-on Start-up Ready for operation

U_P (at the encoder)

(Uoff < 2V)

\[\frac{dU}{dt} < -50 \text{ V/s} \]

> 100 ms

\[\frac{dU}{dt} > 50 \text{ V/s} \]

Typically 15 s

28.8 V

Up min.

Integrated temperature evaluation

These rotary encoders feature an internal temperature sensor integrated into the encoder electronics, as well as an evaluation circuit for an external temperature sensor. In both cases, the respective digitalized temperature value is transmitted purely serially via the DRIVE-CLiQ interface. Please bear in mind that neither the temperature measurement nor the transmission of the temperature value is “safe” in terms of functional safety.

The temperature measured by the internal temperature sensor is higher by a device-specific and application-specific amount than the temperature at measuring point M1 as shown in the dimension drawing.

Upon reaching a trigger threshold for the internal temperature sensor, these rotary encoders issue an “Alarm 135” error message. This threshold may vary depending on the encoder and is provided in the specifications.

During operation, it is recommended that the temperature be kept adequately below this threshold. Fulfillment of the encoder’s intended use requires adherence to the operating temperature at measuring point M1.

Temperature measurement in motors

To protect a motor from overloading, the motor manufacturer usually installs a temperature sensor in close proximity to the motor winding. A PT 1000 temperature sensor or a KTY 84-130 semiconductor sensor, for example, is to be used for this purpose.

For a PT 1000, the following values apply with regard to the accuracy of the evaluation circuit:

- ±6 K at −40 °C to 80 °C
- ±4 K at 80.1 °C to 160 °C
- ±6 K at 160.1 °C to 200 °C

For a KTY 84-130 semiconductor sensor, the following values apply with regard to the accuracy of the evaluation circuit:

- ±6 K at −40 °C to 80 °C
- ±3 K at 80.1 °C to 160 °C
- ±6 K at 160.1 °C to 200 °C

The temperature values are transmitted via the DRIVE-CLiQ protocol. The specific temperature sensor used can be configured with parameter 601 in the configuration software of the drive (e.g., Starter software).
Online diagnostics and firmware version

For evaluation of the encoder’s functionality, valuation numbers can be cyclically read from the encoder. These valuation numbers indicate the encoder’s current status and can be used to determine its “function reserves.” The function reserves are also transmitted via the DRIVE-CLiQ interface and can be displayed in the higher-level control. Further information is available from HEIDENHAIN upon request.

The firmware version can be read via the DRIVE-CLiQ parameter “Act_FW_Version” (index 0). The final two digits of the displayed value are decisive.
Electrical connection: pin layout

Pin layout of the ECI

<table>
<thead>
<tr>
<th>8-pin M12 coupling</th>
<th>9-pin M23 right-angle socket</th>
<th>15-pin PCB connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply</td>
<td>Serial data transmission</td>
<td>Other signals</td>
</tr>
<tr>
<td>M12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>M23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0 V</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>U_P</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>RX_P</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>RX_N</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>TX_P</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>TX_N</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>T+</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>T–</td>
</tr>
<tr>
<td>Brown/ Green</td>
<td>Blue</td>
<td>White/ Green</td>
</tr>
<tr>
<td>Blue</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>White</td>
<td>Gray</td>
<td>Pink</td>
</tr>
<tr>
<td>Gray</td>
<td>Violet</td>
<td>Yellow</td>
</tr>
<tr>
<td>Violet</td>
<td>Yellow</td>
<td>Brown</td>
</tr>
<tr>
<td>Yellow</td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

1) Only for output cables for inside the motor housing
2) Connections for an external temperature sensor (depends on the output cable inside the motor housing; see Temperature measurement in motors in the Encoders for Servo Drives brochure)

Cable shield connected to housing; **U_P** = Supply voltage

Note about safety-related applications: use only adequately qualified, completely assembled DRIVE-CLiQ cables from HEIDENHAIN or Siemens. Do not modify cables or exchange their connectors without first consulting with HEIDENHAIN Traunreut!

Vacant pins or wires must not be used!
Electrical connection

Cables

EPG output cables for inside the motor housing 3.7 mm; 2(2 x 0.06) + (4 x 0.06) mm²; AP = 0.06 mm² with shield crimping Ø 4.3 mm

With 15-pin PCB connector and 9-pin M23 SpeedTEC angle flange socket (male), and wires for temperature sensor¹	ID 1125403-N2⁴; length: 0.3 m
With 15-pin PCB connector and 9-pin M23 SpeedTEC angle flange socket (male)	ID 1125408-N2⁴; length: 0.3 m
With 15-pin PCB connector and M12 coupling (male)	ID 1160559-01³; length: 1 m

¹ The electromagnetic compatibility of the complete system must be ensured
² Operating temperature range (conditional): –20 °C to 120 °C
³ Operating temperature range (conditional): –40 °C to 85 °C

PUR connecting cables Ø 6.8 m; 2(2 x 0.17 mm²) + (2 x 0.24 mm²); AP = 0.24 mm²

With 8-pin M12 connector (female) and 8-pin M12 coupling (male)	ID 822504-xx
With 8-pin M12 connector (female) and RJ45 Siemens connector (IP67)	ID 1094652-xx
With 8-pin M12 connector (female) and RJ45 Siemens connector (IP20)	ID 1093042-xx
With M23 SpeedTEC connector (female) and RJ45 Siemens connector (IP20)	ID 1121546-xx
With M23 SpeedTEC connector (female) and 8-pin M12 coupling (male)	ID 1121536-xx

AP: Cross section of power supply lines
Output cables may require strain relief. Always provide strain relief for cable lengths > 0.5 m.

SpeedTEC is a registered trademark of Intercontec Pfeiffer Industriesteckverbindungen GmbH.
DRIVE-CLiQ is a registered trademark of Siemens AG.

Further information:
Comply with the requirements described in the following documents to ensure the correct and intended operation of the encoder:
- Brochure: Encoders for Servo Drives ID 208922-xx
- Brochure: Cables and Connectors ID 1206103-xx
- Mounting instructions: AE ECI4090S ID 1184567-xx
- Mounting instructions: TTR EXI4000 ID 1147618-xx
- Brochure: Interfaces of HEIDENHAIN Encoders ID 1078628-xx

This Product Information document supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the Product Information document edition valid when the order is made.