Product Information

LIC 4113V
LIC 4193V
Exposed Linear Encoders for High Vacuum
Exposed linear encoders for high vacuum applications

- Measuring lengths up to 3 m
- Measuring steps down to 0.001 µm
- Glass or glass ceramic measuring standard
- Measuring standard is secured with fixing clamps

Position of the stop pins

ML ≤ 2040

ML > 2040

Mounting possibilities for scanning head

(shown without fixing clamps)

F = Machine guideway
* = Mounting error plus dynamic guideway error
◎ = Beginning of measuring length (ML)
◎ = Code start value: 100±1 mm
◎ = Linear scale length
◎ = Fixed-point element for defining the thermal fixed point
1 = Gap is adjusted with a spacer shim during mounting
2 = Depends on measuring length (ML); use additional pair of fixing clamps
3 = Adhesive
4 = Mounting clearance between scanning head and linear scale
5 = Optical centerline
6 = Direction of motion of the scanning unit for ascending position values
Linear scale LIC 4003

Measuring standard
- METALLUR grating on glass ceramic or glass

Coefficient of linear expansion
- $\alpha_{\text{therm}} = 8 \cdot 10^{-6} \text{ K}^{-1}$ (glass)
- $\alpha_{\text{therm}} = (0 \pm 0.5) \cdot 10^{-6} \text{ K}^{-1}$ (Robax glass ceramic)

Accuracy grade
- $\pm 1 \mu m$ (only for Robax glass ceramic), $\pm 3 \mu m$, $\pm 5 \mu m$

Baseline error
- $\leq \pm 0.275 \mu m/10 \text{ mm}$

Measuring length (ML)
- 240, 340, 440, 640, 840, 1040, 1240, 1440, 1640, 1840, 2040, 2240, 2440, 2640, 2840, 3040 (Robax glass ceramic only up to ML of 1640)

Mass
- 3 g + 0.1 g/mm of measuring length

Scanning head LIC 411 V, LIC 419 F V, LIC 419 M V, LIC 419 P V, LIC 419 Y V

<table>
<thead>
<tr>
<th>Interface</th>
<th>LIC 411 V</th>
<th>LIC 419 F V</th>
<th>LIC 419 M V</th>
<th>LIC 419 P V</th>
<th>LIC 419 Y V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering designation*</td>
<td>EnDat 2.2</td>
<td>Fanuc Serial Interface</td>
<td>Mitsubishi high speed interface</td>
<td>Panasonic Serial Interface</td>
<td>Yaskawa Serial Interface</td>
</tr>
<tr>
<td>Measuring step*</td>
<td>0.01 µm (10 nm)</td>
<td>0.005 µm (5 nm)</td>
<td>0.001 µm (1 nm)</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Calculation time t_{calc}</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Clock frequency</td>
<td>--</td>
<td>5 µs</td>
<td>--</td>
<td>16 MHz</td>
<td>--</td>
</tr>
</tbody>
</table>

Traversing speed
- $\leq 600 \text{ m/min}$

Interpolation error
- $\pm 20 \text{ nm}$

Electrical connection
- Cable (1 m or 3 m) with 15-pin D-sub connector (female)

Cable length (with HEIDENHAIN cable)
- $\leq 100 \text{ m}$
- $\leq 50 \text{ m}$
- $\leq 30 \text{ m}$
- $\leq 50 \text{ m}$

Supply voltage
- DC 3.6 V to 14 V

Power consumption
- At 3.6 V: $\leq 700 \text{ mW}$
- At 14 V: $\leq 800 \text{ mW}$
- At 3.6 V: $\leq 850 \text{ mW}$
- At 14 V: $\leq 950 \text{ mW}$

Current consumption (typical)
- At 5 V: 75 mA (without load)
- At 5 V: 95 mA (without load)

Vibration
- 55 Hz to 2000 Hz
- Shock: 6 ms

- $\leq 500 \text{ m/s}^2$ (EN 60068-2-6)
- $\leq 1000 \text{ m/s}^2$ (EN 60068-2-27)

Operating temperature
- $-10 ^\circ \text{C}$ to $50 ^\circ \text{C}$

Baking temperature
- 100 °C

Vacuum class
- High vacuum down to 10^{-7} mbar

Protection
- EN 60529
- IP40

Mass
- Scanning head: 18 g (without cable)
- Cable: 21 g/m
- Connecting element: 64 g

1) Mitsubishi: measuring length $\leq 2040 \text{ mm}$; Yaskawa: measuring length $\leq 1840 \text{ mm}$

2) See General electrical information in the Interfaces of HEIDENHAIN Encoders brochure

Robax is a registered trademark of Schott-Glaswerke, Mainz, Germany

Product Information: LIC 4113V, LIC 4193V 01/2020
Encoders for use in a vacuum

These vacuum-compatible encoders feature the following characteristics:

- Air vents
- Clean-room manufacturing
- Specialized cleaning and packaging
- Cable with PTFE insulation and tin-plated copper braiding

Residual gas analysis

The influence of encoders on the quality of a vacuum can be determined through residual gas analyses. In these analyses, a sample in a vacuum chamber is pumped out to at least 10^{-6} mbar (turbomolecular pump, pumping speed 15 l/s to 200 l/s). The residual gases are measured with a mass spectrometer (Pfeiffer QMA 200) and an absolute pressure sensor (VACOM ATMION). The outgassing behavior of the examined sample can then be deduced by subtracting the typical residual gases of the empty chamber.

The amount of remaining residual gases depends not only on the cleanliness of the sample and the tested materials, but also on the pump type used and its pumping speed. The higher the pumping speed for the measurement is, and the longer the gas is pumped out, the lower the amount of residual gases will be.

To attain the lowest possible outgassing values, HEIDENHAIN recommends baking at 100 °C for 48 hours under high vacuum conditions.

The figure shows the spectrum of the residual gas analysis of an AK LIC 411 V scanning head with a 1 m cable and D-sub connector. The scanning head was baked at 100 °C in a high vacuum. The outgassing of the linear scale (with fixed-point adhesive bond) was barely measurable or depictable.
Electrical connection
Cables

<table>
<thead>
<tr>
<th>PUR connecting cables</th>
<th>[4 x (2 x 0.09 mm²)]; (A_P = 0.09 \text{ mm}^2)</th>
<th>Ø 6 mm</th>
<th>Ø 3.7 mm ¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With 8-pin M12 connector (female) and 8-pin M12 coupling (male)</td>
<td></td>
<td>1036372-xx</td>
<td>801142-xx</td>
</tr>
<tr>
<td>With 8-pin M12 right-angle connector (female) and 8-pin M12 coupling (male)</td>
<td></td>
<td>373289-xx</td>
<td>801149-xx</td>
</tr>
<tr>
<td>With 8-pin M12 connector (female) and 15-pin D-sub connector (male) for the PWM 20, EIB 74x, etc.</td>
<td></td>
<td>524599-xx</td>
<td>801129-xx</td>
</tr>
<tr>
<td>With 8-pin M12 right-angle connector (female) and 15-pin D-sub connector (male) for the PWM 20, EIB 74x, etc.</td>
<td></td>
<td>722025-xx</td>
<td>801140-xx</td>
</tr>
<tr>
<td>With 8-pin M12 connector (female) and stripped cable end</td>
<td></td>
<td>634265-xx</td>
<td>–</td>
</tr>
<tr>
<td>With 8-pin M12 right-angle connector (female) and unstripped cable end</td>
<td></td>
<td>606317-xx</td>
<td>–</td>
</tr>
</tbody>
</table>

¹) Maximum overall length: 6 m

\(A_P \): Cross section of power supply lines
Electrical connection

Pin layout

Connecting cables and pin layouts for Fanuc, Mitsubishi, Panasonic, and Yaskawa can be found in the Exposed Linear Encoders brochure.

EnDat pin layout

15-pin D-sub connector

<table>
<thead>
<tr>
<th>5</th>
<th>12</th>
<th>7</th>
<th>14</th>
<th>4</th>
<th>11</th>
<th>1</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_p</td>
<td>Sensor</td>
<td>0 V</td>
<td>Sensor</td>
<td>0 V</td>
<td>Data</td>
<td>Data</td>
<td>CLOCK</td>
</tr>
<tr>
<td>Brown/Green</td>
<td>Blue</td>
<td>White/Green</td>
<td>White</td>
<td>Gray</td>
<td>Pink</td>
<td>Violet</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Cable shield connected to housing; U_p = Power supply voltage

Sensor: The sense line is connected in the encoder with the corresponding power line. Vacant pins or wires must not be used!

This Product Information document supersedes all previous editions, which thereby become invalid. The basis for ordering from HEIDENHAIN is always the Product Information document edition valid when the order is made.

Further information:

Comply with the requirements described in the following documents to ensure the correct operation of the encoder:

- Brochure: Exposed Linear Encoders 208960-xx
- Brochure: Cables and Connectors 1206103-xx
- Brochure: Interfaces of HEIDENHAIN Encoders 1078628-xx
- Technical Information document: Linear Encoders for Vacuum Technology 627568-xx